Abstract
The skin is the main organ. It is approximately 8 pounds for the average adult. Our skin is a truly wonderful organ. It isolates us and shields our bodies from hazards. However, the skin is also vulnerable to damage and distracted from its original appearance: brown, black, or blue, or combinations of those colors, known as pigmented skin lesions. These common pigmented skin lesions (CPSL) are the leading factor of skin cancer, or can say these are the primary causes of skin cancer. In the healthcare sector, the categorization of CPSL is the main problem because of inaccurate outputs, overfitting, and higher computational costs. Hence, we proposed a classification model based on multi-deep feature and support vector machine (SVM) for the classification of CPSL. The proposed system comprises two phases: First, evaluate the 11 CNN model's performance in the deep feature extraction approach with SVM, and then, concatenate the top performed three CNN model's deep features and with the help of SVM to categorize the CPSL. In the second step, 8192 and 12,288 features are obtained by combining binary and triple networks of 4096 features from the top performed CNN model. These features are also given to the SVM classifiers. The SVM results are also evaluated with principal component analysis (PCA) algorithm to the combined feature of 8192 and 12,288. The highest results are obtained with 12,288 features. The experimentation results, the combination of the deep feature of Alexnet, VGG16 and VGG19, achieved the highest accuracy of 91.7% using SVM classifier. As a result, the results show that the proposed methods are a useful tool for CPSL classification.
Similar content being viewed by others
Data Availability Statement
Data sharing does not apply to this article, as no new data were created or analyzed in this study.
References
A. C. Society. Cancer Facts & Figures 2018. Atlanta, American Cancer Society. 2018.
Koh HK. Melanoma screening: focusing the public health journey. Archives of Dermatology. 2007 Jan 1;143(1):101-3
Nikolaou V, Stratigos AJ. Emerging trends in the epidemiology of melanoma. British Journal of Dermatology. 2014 Jan 1;170(1):11-9.
A. C. Society. Cancer Facts & Figures 2008. Atlanta, American Cancer Society. 2008.
Safigholi H, Meigooni AS, Song WY. Comparison of 192Ir, 169Yb, and 60Co high-dose-rate brachytherapy sources for skin cancer treatment. Medical Physics. 2017 Sep;44(9):4426-36.
Safigholi H, Song WY, Meigooni AS. Optimum radiation source for radiation therapy of skin cancer. Journal of applied clinical medical physics. 2015 Sep;16(5):219-27.
Ouhib Z, Kasper M, Calatayud JP, Rodriguez S, Bhatnagar A, Pai S, Strasswimmer J. Aspects of dosimetry and clinical practice of skin brachytherapy: The American Brachytherapy Society working group report. Brachytherapy. 2015 Nov 1;14(6):840-58.
Dorj UO, Lee KK, Choi JY, Lee M. The skin cancer classification using deep convolutional neural network. Multimedia Tools and Applications. 2018 Apr 1;77(8):9909-24.
Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017 Feb;542(7639):115-8.
Ruiz D, Berenguer V, Soriano A, SáNchez B. A decision support system for the diagnosis of melanoma: A comparative approach. Expert Systems with Applications. 2011 Nov 1;38(12):15217-23.
Mohan SV, Chang AL. Advanced basal cell carcinoma: epidemiology and therapeutic innovations. Current dermatology reports. 2014 Mar 1;3(1):40-5.
Lindelöf B, Hedblad MA. Accuracy in the clinical diagnosis and pattern of malignant melanoma at a dermatological clinic. The Journal of dermatology. 1994 Jul;21(7):461-4.
Morton CA, Mackie RM. Clinical accuracy of the diagnosis of cutaneous malignant melanoma. The British Journal of dermatology. 1998 Feb;138(2):283-7.
Argenziano G, Soyer HP. Dermoscopy of pigmented skin lesions–a valuable tool for early. The lancet oncology. 2001 Jul 1;2(7):443-9.
Bafounta ML, Beauchet A, Aegerter P, Saiag P. Is dermoscopy (epiluminescence microscopy) useful for the diagnosis of melanoma? Results of a meta-analysis using techniques adapted to the evaluation of diagnostic tests. Archives of dermatology. 2001 Oct 1;137(10):1343-50.
Vestergaard ME, Macaskill PH, Holt PE, Menzies SW. Dermoscopy compared with naked eye examination for the diagnosis of primary melanoma: a meta‐analysis of studies performed in a clinical setting. British Journal of Dermatology. 2008 Sep;159(3):669-76.
Salerni G, Terán T, Puig S, Malvehy J, Zalaudek I, Argenziano G, Kittler H. Meta‐analysis of digital dermoscopy follow‐up of melanocytic skin lesions: a study on behalf of the International Dermoscopy Society. Journal of the European Academy of Dermatology and Venereology. 2013 Jul;27(7):805-14.
Binder M, Schwarz M, Winkler A, Steiner A, Kaider A, Wolff K, Pehamberger H. Epiluminescence microscopy: a useful tool for the diagnosis of pigmented skin lesions for formally trained dermatologists. Archives of dermatology. 1995 Mar 1;131(3):286-91.
Braun RP, Rabinovitz HS, Oliviero M, Kopf AW, Saurat JH. Dermoscopy of pigmented skin lesions. Journal of the American Academy of Dermatology. 2005 Jan 1;52(1):109-21.
Kittler H, Pehamberger H, Wolff K, Binder MJ. Diagnostic accuracy of dermoscopy. The lancet oncology. 2002 Mar 1;3(3):159-65.
Piccolo D, Ferrari A, Peris KE, Daidone R, Ruggeri B, Chimenti S. Dermoscopic diagnosis by a trained clinician vs a clinician with minimal dermoscopy training vs computer‐aided diagnosis of 341 pigmented skin lesions: a comparative study. British Journal of Dermatology. 2002 ;147(3):481-6.
Pehamberger H, Steiner A, Wolff K. In vivo epiluminescence microscopy of pigmented skin lesions I Pattern analysis of pigmented skin lesions. Journal of the American Academy of Dermatology. 1987 17(4):571-83.
Steiner A, Pehamberger H, Wolff K. Improvement of the diagnostic accuracy in pigmented skin lesions by epiluminescent light microscopy. Anticancer research. 1987;7(3):433-4.
Dolianitis C, Kelly J, Wolfe R, Simpson P. Comparative performance of 4 dermoscopic algorithms by nonexperts for the diagnosis of melanocytic lesions. Archives of dermatology. 2005;141(8):1008-14.
Carli P, Quercioli E, Sestini S, Stante M, Ricci L, Brunasso G, De Giorgi V. Pattern analysis, not simplified algorithms, is the most reliable method for teaching dermoscopy for melanoma diagnosis to residents in dermatology. British Journal of Dermatology. 2003 May;148(5):981-4.
Burroni M, Corona R, Dell’Eva G, Sera F, Bono R, Puddu P, Perotti R, Nobile F, Andreassi L, Rubegni P. Melanoma computer-aided diagnosis: reliability and feasibility study. Clinical cancer research. 2004 Mar 15;10(6):1881-6.
Gutman D et al. Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). 2016.
Rosado B, Menzies S, Harbauer A, Pehamberger H, Wolff K, Binder M, Kittler H. Accuracy of computer diagnosis of melanoma: a quantitative meta-analysis. Archives of Dermatology. 2003 Mar 1;139(3):361-7.
Masood A, Ali Al-Jumaily A. Computer-aided diagnostic support system for skin cancer: a review of techniques and algorithms. International Journal of biomedical imaging. 2013 Oct 30;2013.
Barata C, Celebi ME, Marques JS. Improving dermoscopy image classification using color constancy. IEEE Journal of biomedical and health informatics. 2014 Jul 25;19(3):1146-52.
Garnavi R, Aldeen M, Bailey J. Computer-aided diagnosis of melanoma using border-and wavelet-based texture analysis. IEEE Transactions on Information Technology in Biomedicine. 2012 Aug 8;16(6):1239-52.
Glaister J, Wong A, Clausi DA. Segmentation of skin lesions from digital images using joint statistical texture distinctiveness. IEEE transactions on biomedical engineering. 2014 Jan 2;61(4):1220-30.
Kaya S, Bayraktar M, Kockara S, Mete M, Halic T, Field HE, Wong HK. Abrupt skin lesion border cutoff measurement for malignancy detection in dermoscopy images. InBMC bioinformatics 2016 Oct 1 (Vol. 17, No. 13, p. 367). BioMed Central.
Haroon M, Gallaghar P, Ahmad M, FitzGerald O. Elevated CRP even at the first visit to a rheumatologist is associated with long-term poor outcomes in patients with psoriatic arthritis. Clinical Rheumatology. 2020.
Chatterjee S, Dey D, Munshi S. Integration of morphological preprocessing and fractal-based feature extraction with recursive feature elimination for skin lesion types classification. Computer methods and programs in biomedicine. 2019 Sep 1; 178:201-18.
Birkenfeld JS, Tucker-Schwartz JM, Soenksen LR, Avilés-Izquierdo JA, Marti-Fuster B. Computer-aided classification of suspicious pigmented lesions using wide-field images. Computer Methods and Programs in Biomedicine. 2020;195:105631.
Balaji, V. R., S. T. Suganthi, R. Rajadevi, V. Krishna Kumar, B. Saravana Balaji, and Sanjeevi Pandiyan. (2020) Skin disease detection and segmentation using dynamic graph cut algorithm and classification through Naive Bayes Classifier. Measurement pp.107922
Al-Masni, M. A., Kim, D. H., & Kim, T. S. (2020). Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification. Computer Methods and Programs in Biomedicine, 190, 105351
Chatterjee, Saptarshi, Debangshu Dey, Sugata Munshi, and Surajit Gorai. (2019) Extraction of features from cross-correlation in space and frequency domains for classification of skin lesions. Biomedical Signal Processing and Control 53, 101581
Qin, Zhiwei, Zhao Liu, Ping Zhu, and Yongbo Xue. (2020) A GAN-based image synthesis method for skin lesion classification. Computer Methods and Programs in Biomedicine, pp.105568
Tschandl P, Rosendahl C, Kittler H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific data. 2018 Aug 14; 5:180161
Manohar N, Kumar YS, Rani R, Kumar GH. Convolutional Neural Network with SVM for Classification of Animal Images. In Emerging Research in Electronics, Computer Science and Technology 2019 (pp. 527–537). Springer, Singapore
Agarap AF. An architecture combining convolutional neural network (CNN) and support vector machine (SVM) for image classification. arXiv preprint arXiv:1712.03541. 2017 Dec 10.
Codella NC, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW, Kalloo A, Liopyris K, Mishra N, Kittler H, Halpern A. Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (ISIC). In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) 2018 Apr 4 (pp. 168–172). IEEE.
Milton MA. Automated skin lesion classification using ensemble of deep neural networks in isic 2018: Skin lesion analysis towards melanoma detection challenge. arXiv preprint arXiv:1901.10802. 2019 Jan 30.
Cohen JF, Korevaar DA, Altman DG, Bruns DE, Gatsonis CA, Hooft L, Irwig L, Levine D, Reitsma JB, de Vet HCW, Bossuyt PMM. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open 2016;6: e012799. http://bmjopen.bmj.com/content/6/11/e012799.abstract
Oliveira, R. B., Marranghello, N., Pereira, A. S., & Tavares, J. M. R. (2016). A computational approach for detecting pigmented skin lesions in macroscopic images. Expert Systems with Applications, 61, 53-63.
Kasmi, R., & Mokrani, K. (2016). Classification of malignant melanoma and benign skin lesions: implementation of automatic ABCD rule. IET Image Processing, 10(6), 448-455.
Rastgoo, M., Garcia, R., Morel, O., & Marzani, F. (2015). Automatic differentiation of melanoma from dysplastic nevi. Computerized Medical Imaging and Graphics, 43, 44-52.
Shimizu, K., Iyatomi, H., Celebi, M. E., Norton, K. A., & Tanaka, M. (2014). Four-class classification of skin lesions with task decomposition strategy. IEEE transactions on biomedical engineering, 62(1), 274-283.
Gonzalez-Diaz, I. (2018). Dermaknet: Incorporating the knowledge of dermatologists to convolutional neural networks for skin lesion diagnosis. IEEE journal of biomedical and health informatics, 23(2), 547-559.
Funding
Any organization or institution does not support this research.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Ethical Approval
This article does not contain any studies with human participants or animals performed by any authors.
Conflict of Interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Sethy, P.K., Behera, S.K. & Kannan, N. Categorization of Common Pigmented Skin Lesions (CPSL) using Multi-Deep Features and Support Vector Machine. J Digit Imaging 35, 1207–1216 (2022). https://doi.org/10.1007/s10278-022-00632-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10278-022-00632-9