Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Categorization of Common Pigmented Skin Lesions (CPSL) using Multi-Deep Features and Support Vector Machine

  • Original Paper
  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

The skin is the main organ. It is approximately 8 pounds for the average adult. Our skin is a truly wonderful organ. It isolates us and shields our bodies from hazards. However, the skin is also vulnerable to damage and distracted from its original appearance: brown, black, or blue, or combinations of those colors, known as pigmented skin lesions. These common pigmented skin lesions (CPSL) are the leading factor of skin cancer, or can say these are the primary causes of skin cancer. In the healthcare sector, the categorization of CPSL is the main problem because of inaccurate outputs, overfitting, and higher computational costs. Hence, we proposed a classification model based on multi-deep feature and support vector machine (SVM) for the classification of CPSL. The proposed system comprises two phases: First, evaluate the 11 CNN model's performance in the deep feature extraction approach with SVM, and then, concatenate the top performed three CNN model's deep features and with the help of SVM to categorize the CPSL. In the second step, 8192 and 12,288 features are obtained by combining binary and triple networks of 4096 features from the top performed CNN model. These features are also given to the SVM classifiers. The SVM results are also evaluated with principal component analysis (PCA) algorithm to the combined feature of 8192 and 12,288. The highest results are obtained with 12,288 features. The experimentation results, the combination of the deep feature of Alexnet, VGG16 and VGG19, achieved the highest accuracy of 91.7% using SVM classifier. As a result, the results show that the proposed methods are a useful tool for CPSL classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

Data sharing does not apply to this article, as no new data were created or analyzed in this study.

References

  1. A. C. Society. Cancer Facts & Figures 2018. Atlanta, American Cancer Society. 2018.

    Google Scholar 

  2. Koh HK. Melanoma screening: focusing the public health journey. Archives of Dermatology. 2007 Jan 1;143(1):101-3

    Article  PubMed  Google Scholar 

  3. Nikolaou V, Stratigos AJ. Emerging trends in the epidemiology of melanoma. British Journal of Dermatology. 2014 Jan 1;170(1):11-9.

    Article  CAS  PubMed  Google Scholar 

  4. A. C. Society. Cancer Facts & Figures 2008. Atlanta, American Cancer Society. 2008.

    Google Scholar 

  5. Safigholi H, Meigooni AS, Song WY. Comparison of 192Ir, 169Yb, and 60Co high-dose-rate brachytherapy sources for skin cancer treatment. Medical Physics. 2017 Sep;44(9):4426-36.

    Article  CAS  PubMed  Google Scholar 

  6. Safigholi H, Song WY, Meigooni AS. Optimum radiation source for radiation therapy of skin cancer. Journal of applied clinical medical physics. 2015 Sep;16(5):219-27.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ouhib Z, Kasper M, Calatayud JP, Rodriguez S, Bhatnagar A, Pai S, Strasswimmer J. Aspects of dosimetry and clinical practice of skin brachytherapy: The American Brachytherapy Society working group report. Brachytherapy. 2015 Nov 1;14(6):840-58.

    Article  PubMed  Google Scholar 

  8. Dorj UO, Lee KK, Choi JY, Lee M. The skin cancer classification using deep convolutional neural network. Multimedia Tools and Applications. 2018 Apr 1;77(8):9909-24.

    Article  Google Scholar 

  9. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017 Feb;542(7639):115-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ruiz D, Berenguer V, Soriano A, SáNchez B. A decision support system for the diagnosis of melanoma: A comparative approach. Expert Systems with Applications. 2011 Nov 1;38(12):15217-23.

    Article  Google Scholar 

  11. Mohan SV, Chang AL. Advanced basal cell carcinoma: epidemiology and therapeutic innovations. Current dermatology reports. 2014 Mar 1;3(1):40-5.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lindelöf B, Hedblad MA. Accuracy in the clinical diagnosis and pattern of malignant melanoma at a dermatological clinic. The Journal of dermatology. 1994 Jul;21(7):461-4.

    Article  PubMed  Google Scholar 

  13. Morton CA, Mackie RM. Clinical accuracy of the diagnosis of cutaneous malignant melanoma. The British Journal of dermatology. 1998 Feb;138(2):283-7.

    Article  CAS  PubMed  Google Scholar 

  14. Argenziano G, Soyer HP. Dermoscopy of pigmented skin lesions–a valuable tool for early. The lancet oncology. 2001 Jul 1;2(7):443-9.

    Article  CAS  PubMed  Google Scholar 

  15. Bafounta ML, Beauchet A, Aegerter P, Saiag P. Is dermoscopy (epiluminescence microscopy) useful for the diagnosis of melanoma? Results of a meta-analysis using techniques adapted to the evaluation of diagnostic tests. Archives of dermatology. 2001 Oct 1;137(10):1343-50.

    Article  CAS  PubMed  Google Scholar 

  16. Vestergaard ME, Macaskill PH, Holt PE, Menzies SW. Dermoscopy compared with naked eye examination for the diagnosis of primary melanoma: a meta‐analysis of studies performed in a clinical setting. British Journal of Dermatology. 2008 Sep;159(3):669-76.

    CAS  PubMed  Google Scholar 

  17. Salerni G, Terán T, Puig S, Malvehy J, Zalaudek I, Argenziano G, Kittler H. Meta‐analysis of digital dermoscopy follow‐up of melanocytic skin lesions: a study on behalf of the International Dermoscopy Society. Journal of the European Academy of Dermatology and Venereology. 2013 Jul;27(7):805-14.

    Article  CAS  PubMed  Google Scholar 

  18. Binder M, Schwarz M, Winkler A, Steiner A, Kaider A, Wolff K, Pehamberger H. Epiluminescence microscopy: a useful tool for the diagnosis of pigmented skin lesions for formally trained dermatologists. Archives of dermatology. 1995 Mar 1;131(3):286-91.

    Article  CAS  PubMed  Google Scholar 

  19. Braun RP, Rabinovitz HS, Oliviero M, Kopf AW, Saurat JH. Dermoscopy of pigmented skin lesions. Journal of the American Academy of Dermatology. 2005 Jan 1;52(1):109-21.

    Article  PubMed  Google Scholar 

  20. Kittler H, Pehamberger H, Wolff K, Binder MJ. Diagnostic accuracy of dermoscopy. The lancet oncology. 2002 Mar 1;3(3):159-65.

    Article  CAS  PubMed  Google Scholar 

  21. Piccolo D, Ferrari A, Peris KE, Daidone R, Ruggeri B, Chimenti S. Dermoscopic diagnosis by a trained clinician vs a clinician with minimal dermoscopy training vs computer‐aided diagnosis of 341 pigmented skin lesions: a comparative study. British Journal of Dermatology. 2002 ;147(3):481-6.

    Article  CAS  PubMed  Google Scholar 

  22. Pehamberger H, Steiner A, Wolff K. In vivo epiluminescence microscopy of pigmented skin lesions I Pattern analysis of pigmented skin lesions. Journal of the American Academy of Dermatology. 1987 17(4):571-83.

    Article  CAS  PubMed  Google Scholar 

  23. Steiner A, Pehamberger H, Wolff K. Improvement of the diagnostic accuracy in pigmented skin lesions by epiluminescent light microscopy. Anticancer research. 1987;7(3):433-4.

    CAS  PubMed  Google Scholar 

  24. Dolianitis C, Kelly J, Wolfe R, Simpson P. Comparative performance of 4 dermoscopic algorithms by nonexperts for the diagnosis of melanocytic lesions. Archives of dermatology. 2005;141(8):1008-14.

    Article  PubMed  Google Scholar 

  25. Carli P, Quercioli E, Sestini S, Stante M, Ricci L, Brunasso G, De Giorgi V. Pattern analysis, not simplified algorithms, is the most reliable method for teaching dermoscopy for melanoma diagnosis to residents in dermatology. British Journal of Dermatology. 2003 May;148(5):981-4.

    Article  CAS  PubMed  Google Scholar 

  26. Burroni M, Corona R, Dell’Eva G, Sera F, Bono R, Puddu P, Perotti R, Nobile F, Andreassi L, Rubegni P. Melanoma computer-aided diagnosis: reliability and feasibility study. Clinical cancer research. 2004 Mar 15;10(6):1881-6.

    Article  PubMed  Google Scholar 

  27. Gutman D et al. Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). 2016.

  28. Rosado B, Menzies S, Harbauer A, Pehamberger H, Wolff K, Binder M, Kittler H. Accuracy of computer diagnosis of melanoma: a quantitative meta-analysis. Archives of Dermatology. 2003 Mar 1;139(3):361-7.

    Article  PubMed  Google Scholar 

  29. Masood A, Ali Al-Jumaily A. Computer-aided diagnostic support system for skin cancer: a review of techniques and algorithms. International Journal of biomedical imaging. 2013 Oct 30;2013.

    Google Scholar 

  30. Barata C, Celebi ME, Marques JS. Improving dermoscopy image classification using color constancy. IEEE Journal of biomedical and health informatics. 2014 Jul 25;19(3):1146-52.

    PubMed  Google Scholar 

  31. Garnavi R, Aldeen M, Bailey J. Computer-aided diagnosis of melanoma using border-and wavelet-based texture analysis. IEEE Transactions on Information Technology in Biomedicine. 2012 Aug 8;16(6):1239-52.

    Article  PubMed  Google Scholar 

  32. Glaister J, Wong A, Clausi DA. Segmentation of skin lesions from digital images using joint statistical texture distinctiveness. IEEE transactions on biomedical engineering. 2014 Jan 2;61(4):1220-30.

    Article  PubMed  Google Scholar 

  33. Kaya S, Bayraktar M, Kockara S, Mete M, Halic T, Field HE, Wong HK. Abrupt skin lesion border cutoff measurement for malignancy detection in dermoscopy images. InBMC bioinformatics 2016 Oct 1 (Vol. 17, No. 13, p. 367). BioMed Central.

  34. Haroon M, Gallaghar P, Ahmad M, FitzGerald O. Elevated CRP even at the first visit to a rheumatologist is associated with long-term poor outcomes in patients with psoriatic arthritis. Clinical Rheumatology. 2020.

  35. Chatterjee S, Dey D, Munshi S. Integration of morphological preprocessing and fractal-based feature extraction with recursive feature elimination for skin lesion types classification. Computer methods and programs in biomedicine. 2019 Sep 1; 178:201-18.

    Article  Google Scholar 

  36. Birkenfeld JS, Tucker-Schwartz JM, Soenksen LR, Avilés-Izquierdo JA, Marti-Fuster B. Computer-aided classification of suspicious pigmented lesions using wide-field images. Computer Methods and Programs in Biomedicine. 2020;195:105631.

  37. Balaji, V. R., S. T. Suganthi, R. Rajadevi, V. Krishna Kumar, B. Saravana Balaji, and Sanjeevi Pandiyan. (2020) Skin disease detection and segmentation using dynamic graph cut algorithm and classification through Naive Bayes Classifier. Measurement pp.107922

  38. Al-Masni, M. A., Kim, D. H., & Kim, T. S. (2020). Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification. Computer Methods and Programs in Biomedicine, 190, 105351

  39. Chatterjee, Saptarshi, Debangshu Dey, Sugata Munshi, and Surajit Gorai. (2019) Extraction of features from cross-correlation in space and frequency domains for classification of skin lesions. Biomedical Signal Processing and Control 53, 101581

  40. Qin, Zhiwei, Zhao Liu, Ping Zhu, and Yongbo Xue. (2020) A GAN-based image synthesis method for skin lesion classification. Computer Methods and Programs in Biomedicine, pp.105568

  41. Tschandl P, Rosendahl C, Kittler H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific data. 2018 Aug 14; 5:180161

  42. Manohar N, Kumar YS, Rani R, Kumar GH. Convolutional Neural Network with SVM for Classification of Animal Images. In Emerging Research in Electronics, Computer Science and Technology 2019 (pp. 527–537). Springer, Singapore

  43. Agarap AF. An architecture combining convolutional neural network (CNN) and support vector machine (SVM) for image classification. arXiv preprint arXiv:1712.03541. 2017 Dec 10.

  44. Codella NC, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW, Kalloo A, Liopyris K, Mishra N, Kittler H, Halpern A. Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (ISIC). In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) 2018 Apr 4 (pp. 168–172). IEEE.

  45. Milton MA. Automated skin lesion classification using ensemble of deep neural networks in isic 2018: Skin lesion analysis towards melanoma detection challenge. arXiv preprint arXiv:1901.10802. 2019 Jan 30.

  46. Cohen JF, Korevaar DA, Altman DG, Bruns DE, Gatsonis CA, Hooft L, Irwig L, Levine D, Reitsma JB, de Vet HCW, Bossuyt PMM. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open 2016;6: e012799. http://bmjopen.bmj.com/content/6/11/e012799.abstract

  47. Oliveira, R. B., Marranghello, N., Pereira, A. S., & Tavares, J. M. R. (2016). A computational approach for detecting pigmented skin lesions in macroscopic images. Expert Systems with Applications, 61, 53-63.

  48. Kasmi, R., & Mokrani, K. (2016). Classification of malignant melanoma and benign skin lesions: implementation of automatic ABCD rule. IET Image Processing, 10(6), 448-455.

  49. Rastgoo, M., Garcia, R., Morel, O., & Marzani, F. (2015). Automatic differentiation of melanoma from dysplastic nevi. Computerized Medical Imaging and Graphics, 43, 44-52.

  50. Shimizu, K., Iyatomi, H., Celebi, M. E., Norton, K. A., & Tanaka, M. (2014). Four-class classification of skin lesions with task decomposition strategy. IEEE transactions on biomedical engineering, 62(1), 274-283.

  51. Gonzalez-Diaz, I. (2018). Dermaknet: Incorporating the knowledge of dermatologists to convolutional neural networks for skin lesion diagnosis. IEEE journal of biomedical and health informatics, 23(2), 547-559.

Download references

Funding

Any organization or institution does not support this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabira Kumar Sethy.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sethy, P.K., Behera, S.K. & Kannan, N. Categorization of Common Pigmented Skin Lesions (CPSL) using Multi-Deep Features and Support Vector Machine. J Digit Imaging 35, 1207–1216 (2022). https://doi.org/10.1007/s10278-022-00632-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-022-00632-9

Keywords

Navigation