Abstract
The separation of blood vessels in the retina is a major aspect in detecting ailment and is carried out by segregating the retinal blood vessels from the fundus images. Moreover, it helps to provide earlier therapy for deadly diseases and prevent further impacts due to diabetes and hypertension. Many reviews already exist for this problem, but those reviews have presented the analysis of a single framework. Hence, this article on retinal segmentation review has revealed distinct methodologies with diverse frameworks that are utilized for blood vessel separation. The novelty of this review research lies in finding the best neural network model by comparing its efficiency. For that, machine learning (ML) and deep learning (DL) were compared and have been reported as the best model. Moreover, different datasets were used to segment the retinal blood vessels. The execution of each approach is compared based on the performance metrics such as sensitivity, specificity, and accuracy using publically accessible datasets like STARE, DRIVE, ROSE, REFUGE, and CHASE. This article discloses the implementation capacity of distinct techniques implemented for each segmentation method. Finally, the finest accuracy of 98% and sensitivity of 96% were achieved for the technique of Convolution Neural Network with Ranking Support Vector Machine (CNN-rSVM). Moreover, this technique has utilized public datasets to verify efficiency. Hence, the overall review of this article has revealed a method for earlier diagnosis of diseases to deliver earlier therapy.
Similar content being viewed by others
References
Uysal E, Güraksin GE: Computer-aided retinal vessel segmentation in retinal images: convolutional neural networks. Multimed Tools Appl 1–24, 2020. https://doi.org/10.1007/s11042-020-09372-w
Zhang B, Zhang L, Zhang L, Karray F: Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput Biol Med 40(4):438-445, 2010. https://doi.org/10.1016/j.compbiomed.2010.02.008
Biswal B, Pooja T, Subrahmanyam NB: Robust retinal blood vessel segmentation using line detectors with multiple masks. IET Image Process 12(3):389-399, 2017. https://doi.org/10.1049/iet-ipr.2017.0329
Marín D, Aquino A, Gegundez-Arias ME, Bravo Caro JM: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans Med Imaging 30(1):146-158, 2010. https://doi.org/10.1109/TMI.2010.2064333
Wu Y, Xia Y, Song Y, Zhang Y, Cai W: NFN+: A novel network followed network for retinal vessel segmentation. Neural Netw, 2020. https://doi.org/10.1016/j.neunet.2020.02.018
Melinščak M, Prentašić P, Lončarić S: Retinal vessel segmentation using deep neural networks. 10th International Conference on Computer Vision Theory and Applications (VISAPP 2015), 2015.
Feldman-Billard S, Larger É, Massin P: Early worsening of diabetic retinopathy after rapid improvement of blood glucose control in patients with diabetes. Diabetes Metab 44(1):4-14, 2018. https://doi.org/10.1016/j.diabet.2017.10.014
Alonso‐Montes C, Vilariño DL, Dudek P, Penedo MG: Fast retinal vessel tree extraction: A pixel parallel approach. Int J Circuit Theory Appl 36(5‐6):641-651, 2008. https://doi.org/10.1002/cta.512
Romero-Aroca P: Managing diabetic macular edema: the leading cause of diabetes blindness. World J Diabetes 2(6):98, 2011. https://doi.org/10.4239/wjd.v2.i6.98
Palomera-Pérez MA, Martinez-Perez ME, Benítez-Pérez H, Ortega-Arjona JL: Parallel multiscale feature extraction and region growing: application in retinal blood vessel detection. IEEE Trans Inf Technol Biomed 14(2):500-506, 2009. https://doi.org/10.1109/TITB.2009.2036604
Perfetti R, Ricci E, Casali D et al: Cellular neural networks with virtual template expansion for retinal vessel segmentation. IEEE Trans Circuits Syst, II, Exp Briefs 54(2):141-145, 2007. https://doi.org/10.1109/TCSII.2006.886244
Delibasis KK, Kechriniotis AI, Tsonos C et al: Automatic model-based tracing algorithm for vessel segmentation and diameter estimation. Comput Methods Programs Biomed 100(2):108-122, 2010. https://doi.org/10.1016/j.cmpb.2010.03.004
Soares JVB, Leandro JJG, Cesar RM et al: Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans Med Imaging 25(9):1214-1222, 2006. https://doi.org/10.1109/TMI.2006.879967
Ghoshal R, Saha A, Das S: An improved vessel extraction scheme from retinal fundus images. Multimed Tools Appl 78(18):25221-25239, 2019. https://doi.org/10.1007/s11042-019-7719-9
Witmer MT, Kiss S: Wide-field imaging of the retina. Surv Ophthalmol 58(2):143-154, 2013. https://doi.org/10.1016/j.survophthal.2012.07.003
Wang C, Zhao Z, Ren Q, Xu Y, Yu Y: Dense u-net based on patch-based learning for retinal vessel segmentation. Entropy 21(2):168, 2019. https://doi.org/10.3390/e21020168
Mendonca AM, Campilho A: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans Med Imaging 25(9):1200-1213, 2006. https://doi.org/10.1109/TMI.2006.879955
Guo Y, Camino A, Zhang M et al: Automated segmentation of retinal layer boundaries and capillary plexuses in wide-field optical coherence tomographic angiography. Biomed Opt Express 9(9):4429-4442, 2018. https://doi.org/10.1364/BOE.9.004429
Ricci E, Perfetti R: Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans Med Imaging 26(10):1357-1365, 2007. https://doi.org/10.1109/TMI.2007.898551
Tanihara H, Inoue T, Yamamoto T et al: Phase 2 randomized clinical study of a Rho kinase inhibitor, K-115, in primary open-angle glaucoma and ocular hypertension. Am J Ophthalmol 156(4):731-736, 2013. https://doi.org/10.1016/j.ajo.2013.05.016
Cherukuri V, V Kumar BG, Bala R, Monga V: Deep retinal image segmentation with regularization under geometric priors. IEEE Trans Image Process 29:2552-2567, 2020. https://doi.org/10.1109/TIP.2019.2946078
Leopold HA, Orchard J, Zelek JS et al: Pixelbnn: Augmenting the pixelcnn with batch normalization and the presentation of a fast architecture for retinal vessel segmentation. J Imaging 5(2):26, 2019. https://doi.org/10.3390/jimaging5020026
Chibber R, Ben-Mahmud BM, Chibber S et al: Leukocytes in diabetic retinopathy. Curr Diabetes Rev 3(1):3-14, 2007. https://doi.org/10.2174/157339907779802139
Simonett JM, Scarinci F, Picconi F et al: Early microvascular retinal changes in optical coherence tomography angiography in patients with type 1 diabetes mellitus. Acta Ophthalmol 95(8):e751-e755, 2017. https://doi.org/10.1111/aos.13404
Odstrcilik J, Kolar R, Budai A et al: Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database. IET Image Process 7(4):373-383, 2013. https://doi.org/10.1049/iet-ipr.2012.0455
Feng Z, Yang J, Yao L: Patch-based fully convolutional neural network with skip connections for retinal blood vessel segmentation. 2017 IEEE International Conference on Image Processing (ICIP), IEEE, 2017. https://doi.org/10.1109/ICIP.2017.8296580
Wang X, Jiang X, Ren J: Blood vessel segmentation from fundus image by a cascade classification framework. Pattern Recognit 88:331-341, 2019. https://doi.org/10.1016/j.patcog.2018.11.030
Memari N, Ramli AR, Bin Saripan MI et al: Supervised retinal vessel segmentation from color fundus images based on matched filtering and AdaBoost classifier. PloS one 12(12):e0188939, 2017. https://doi.org/10.1371/journal.pone.0188939
Liskowski P, Krawiec K: Segmenting retinal blood vessels with deep neural networks. IEEE Trans Med Imaging 35(11):2369-2380, 2016. https://doi.org/10.1109/TMI.2016.2546227
Zunino L, Soriano MC, Rosso OA: Distinguishing chaotic and stochastic dynamics from time series by using a multiscale symbolic approach. Phys Rev E 86(4):046210, 2012. https://doi.org/10.1103/PhysRevE.86.046210
Fraz MM, Remagnino P, Hoppe A et al: Blood vessel segmentation methodologies in retinal images–a survey. Comput Methods Programs Biomed 108(1):407-433, 2012. https://doi.org/10.1016/j.cmpb.2012.03.009
Jin Q, Chen Q, Meng Z, Wang B, Su R: Construction of retinal vessel segmentation models based on convolutional neural network. Neural Process Lett 52(2):1005-1022, 2020. https://doi.org/10.1007/s11063-019-10011-1
Aslani S, Sarnel H: A new supervised retinal vessel segmentation method based on robust hybrid features. Biomed Signal Process Control 30:1-12, 2016. https://doi.org/10.1016/j.bspc.2016.05.006
Morales S, Naranjo V, Angulo J et al: Segmentation and analysis of retinal vascular tree from fundus images processing. International Conference on Bio-inspired Systems and Signal Processing, SciTePress, 2, 2012.
Vlachos M, Dermatas E: Multi-scale retinal vessel segmentation using line tracking. Comput Med Imaging Graph 34(3):213-227, 2010. https://doi.org/10.1016/j.compmedimag.2009.09.006
Mo J, Zhang L: Multi-level deep supervised networks for retinal vessel segmentation. Int J Comput Assist Radiol Surg 12(12):2181-2193, 2017. https://doi.org/10.1007/s11548-017-1619-0
Fraz MM, Remagnino P, Hoppe A et al: A supervised method for retinal blood vessel segmentation using line strength, multiscale Gabor and morphological features. 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), IEEE, 2011. https://doi.org/10.1109/ICSIPA.2011.6144129
Durkee MS, Nash LD, Nooshabadi F: Fabrication and characterization of optical tissue phantoms containing macrostructure. JoVE (Journal of Visualized Experiments) 132:e57031, 2018. https://doi.org/10.3791/57031
Lin Y, Zhang H, Hu G: Automatic retinal vessel segmentation via deeply supervised and smoothly regularized network. IEEE Access 7:57717-57724, 2018. https://doi.org/10.1109/ACCESS.2018.2844861
Owen CG, Rudnicka AR, Mullen R et al: Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (CAIAR) program. Invest Ophthalmol Vis Sci 50(5):2004-2010, 2009. https://doi.org/10.1167/iovs.08-3018
Lamb TD, Collin SP, Pugh EN: Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nat Rev Neurosci 8(12):960-976, 2007. https://doi.org/10.1038/nrn2283
Lian S, Li L, Lian G et al: A global and local enhanced residual u-net for accurate retinal vessel segmentation. IEEE/ACM Trans Comput Biol Bioinform, 2019. https://doi.org/10.1109/TCBB.2019.2917188
Gehring WJ: Historical perspective on the development and evolution of eyes and photoreceptors. Int J Dev Biol 48(8-9):707-717, 2004. https://doi.org/10.1387/ijdb.041900wg
Hou Y: Automatic segmentation of retinal blood vessels based on improved multiscale line detection. J Comput Sci Eng 8(2):119-128, 2014.
Graf HG, Dollberg A et al: Active retina implant with a multiplicity of pixel elements. U.S. Patent No. 7,751,896, 2010.
Sim DA, Keane PA, Tufail A et al: Automated retinal image analysis for diabetic retinopathy in telemedicine. Curr Diab Rep 15(3):14, 2015. https://doi.org/10.1007/s11892-015-0577-6
Hayreh SS, Zimmerman MB: Central retinal artery occlusion: visual outcome. Am J Ophthalmol 140(3):376-e1, 2005. https://doi.org/10.1016/j.ajo.2005.03.038
Wong TY, Klein R et al: Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality. Surv Ophthalmol 46(1):59-80, 2001. https://doi.org/10.1016/S0039-6257(01)00234-X
Hashizume H, Baluk P, Morikawa S et al: Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156(4):1363-1380, 2000. https://doi.org/10.1016/S0002-9440(10)65006-7
Casini G, Rickman DW, Brecha NC: AII amacrine cell population in the rabbit retina: identification by parvalbumin immunoreactivity. J Comp Neurol 356(1):132-142, 1995. https://doi.org/10.1002/cne.903560109
Popescu LM, Manole E, Şerboiu CS et al: Identification of telocytes in skeletal muscle interstitium: implication for muscle regeneration. J Cell Mol Med 15(6):1379-1392, 2011. https://doi.org/10.1111/j.1582-4934.2011.01330.x
Andersson RE: The natural history and traditional management of appendicitis revisited: spontaneous resolution and predominance of prehospital perforations imply that a correct diagnosis is more important than an early diagnosis. World J Surg 31(1):86-92, 2007. https://doi.org/10.1007/s00268-006-0056-y
Barkana BD, Saricicek I, Yildirim B: Performance analysis of descriptive statistical features in retinal vessel segmentation via fuzzy logic, ANN, SVM, and classifier fusion. Knowl Based Syst 118:165-176, 2017. https://doi.org/10.1016/j.knosys.2016.11.022
Zhang S, Fu H, Xu Y, Liu Y, Tan M: Retinal image segmentation with a structure-texture demixing network. In: Martel AL et al (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science, vol 12265. Springer, Cham, 2020. https://doi.org/10.1007/978-3-030-59722-1_74
Li X, Jiang Y, Li M, Yin S: Lightweight attention convolutional neural network for retinal vessel image segmentation. IEEE Trans Industr Inform 17(3):1958-1967, 2021. https://doi.org/10.1109/TII.2020.2993842
Wang Y, Zhang J, An C: A Segmentation Based Robust Deep Learning Framework for Multimodal Retinal Image Registration. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1369–1373, 2020. https://doi.org/10.1109/ICASSP40776.2020.9054077
Alhussein M, Aurangzeb K, Haider SI: An unsupervised retinal vessel segmentation using hessian and intensity based approach. IEEE Access 8:165056-165070, 2020. https://doi.org/10.1109/ACCESS.2020.3022943
Ma Y, Hao H, Xie J et al: ROSE: A retinal OCT-angiography vessel segmentation dataset and new model. IEEE Transac Med Imag 40(3):928-939, 2021. https://doi.org/10.1109/TMI.2020.3042802
Tong H, Fang Z, Wei Z et al: SAT-Net: a side attention network for retinal image segmentation. Appl Intell 51:5146–5156, 2021. https://doi.org/10.1007/s10489-020-01966-z
Ghosh SK, Ghosh A: A novel retinal image segmentation using rSVM boosted convolutional neural network for exudates detection. Biomed Signal Process Control 68:102785, 2021.
Guo F, Li W, Kuang Z, Tang J: MES-Net: a new network for retinal image segmentation. Multimed Tools Appl 80:14767–14788, 2021. https://doi.org/10.1007/s11042-021-10580-1
Jiang Y, Liu W, Wu C, Yao H: Multi-scale and multi-branch convolutional neural network for retinal image segmentation. Symmetry 13(3):365, 2021. https://doi.org/10.3390/sym13030365
Boudegga H, Elloumi Y, Akil M, Bedoui MH, Kachouri R, Abdallah AB: Fast and efficient retinal blood vessel segmentation method based on deep learning network. Comput Med Imaging Graph 90:101902, 2021. https://doi.org/10.1016/j.compmedimag.2021.101902
Abràmoff MD, Garvin MD, Sonka M: Retinal imaging and image analysis. IEEE Reviews in Biomedical Engineering 3:169-208, 2010. https://doi.org/10.1109/RBME.2010.2084567
Swanson EA, Izatt JA, Hee MR, Huang D, Lin CP, Schuman JS, Puliafito CA, Fujimoto JG: In vivo retinal imaging by optical coherence tomography. Opt Lett 18:1864-1866, 1993. https://doi.org/10.1364/OL.18.001864
Cole ED, Novais EA, Louzada RN, Waheed NK: Contemporary retinal imaging techniques in diabetic retinopathy: a review. Clin Exp Ophthalmol 44(4):289-299, 2016.
Asakawa K, Kato S, Shoji N, Morita T, Shimizu K: Evaluation of optic nerve head using a newly developed stereo retinal imaging technique by glaucoma specialist and non–expert-certified orthoptist. J Glaucoma 22(9):698-706, 2013. https://doi.org/10.1097/IJG.0b013e318264be18
Heneghan C, Flynn J, O'Keefe M, Cahill M: Characterization of changes in blood vessel width and tortuosity in retinopathy of prematurity using image analysis. Med Image Anal 6(4):407-429, 2002. https://doi.org/10.1016/S1361-8415(02)00058-0
Yu DY, Paula KY, Cringle SJ et al: Functional and morphological characteristics of the retinal and choroidal vasculature. Prog Retin Eye Res 40:53-93, 2014. https://doi.org/10.1016/j.preteyeres.2014.02.001
Chaudhuri S, Chatterjee S, Katz N et al: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans Med Imaging 8(3):263-269, 1989. https://doi.org/10.1109/42.34715
Hilas CS, Mastorocostas PA: An application of supervised and unsupervised learning approaches to telecommunications fraud detection. Knowl Based Syst 21(7):721-726, 2008. https://doi.org/10.1016/j.knosys.2008.03.026
Mac Gillivray TJ, Trucco E, Cameron JR et al: Retinal imaging as a source of biomarkers for diagnosis, characterization and prognosis of chronic illness or long-term conditions. Br J Radiol 87(1040):20130832, 2014. https://doi.org/10.1259/bjr.20130832
Franklin SW, Rajan SE: Diagnosis of diabetic retinopathy by employing image processing technique to detect exudates in retinal images. IET Image Process 8(10):601-609, 2014. https://doi.org/10.1049/iet-ipr.2013.0565
Hassan SSA, Bong DBL, Premsenthil M: Detection of neovascularization in diabetic retinopathy. J Digit Imaging 25(3):437-444, 2012. https://doi.org/10.1007/s10278-011-9418-6
Anzalone A, Bizzarri F, Parodi M, Storace M: A modular supervised algorithm for vessel segmentation in red-free retinal images. Comput Biol Med 38(8):913-922, 2008. https://doi.org/10.1016/j.compbiomed.2008.05.006
Rani P, Priyadarshini N, Rajkumar ER et al: Retinal vessel segmentation under pathological conditions using supervised machine learning. 2016 International Conference on Systems in Medicine and Biology (ICSMB), IEEE, 2016. https://doi.org/10.1109/ICSMB.2016.7915088
Rossant F, Ghorbel I, Bloch I et al: Automated segmentation of retinal layers in OCT imaging and derived ophthalmic measures. IEEE International Symposium on Biomedical Imaging: From Nano to Macro, IEEE, 2009. https://doi.org/10.1109/ISBI.2009.5193320
Thangaraj S, Periyasamy V, Balaji R: Retinal vessel segmentation using neural network. IET Image Process 12(5):669-678, 2017. https://doi.org/10.1049/iet-ipr.2017.0284
Dasgupta A, Singh S: A fully convolutional neural network based structured prediction approach towards the retinal vessel segmentation. 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, VIC, pp 248–251, 2017. https://doi.org/10.1109/ISBI.2017.7950512
Jin Q, Meng Z, Pham TD et al: DUNet: A deformable network for retinal vessel segmentation. Knowl Based Syst 178:149-162, 2019. https://doi.org/10.1016/j.knosys.2019.04.025
Soomro TA, Afifi AJ, Zheng L et al: Deep Learning Models for Retinal Blood Vessels Segmentation: A Review. IEEE Access 7:71696-71717, 2019. https://doi.org/10.1109/ACCESS.2019.2920616
Yin Z, He W, Yang C: Tracking control of a marine surface vessel with full-state constraints. Int J Syst Sci 48(3):535-546, 2017. https://doi.org/10.1080/00207721.2016.1193255
Jain A, Hong L, Pankanti S: Biometric identification. Commun ACM 43(2):90-98, 2000. https://doi.org/10.1145/328236.328110
Wang Y, Ji G, Lin P, Trucco E: Retinal vessel segmentation using multiwavelet kernels and multiscale hierarchical decomposition. Pattern Recognit 46(8):2117-2133, 2013. https://doi.org/10.1016/j.patcog.2012.12.014
Li Q, You J, Zhang D: Vessel segmentation and width estimation in retinal images using multiscale production of matched filter responses. Expert Syst Appl 39(9):7600-7610, 2012. https://doi.org/10.1016/j.eswa.2011.12.046
Kumar D, Pramanik A, Kar SS et al: Retinal blood vessel segmentation using matched filter and Laplacian of Gaussian. 2016 International Conference on Signal Processing and Communications (SPCOM), IEEE, 2016. https://doi.org/10.1109/SPCOM.2016.7746666
Gao X, Cai Y, Qiu C, Cui Y (2017) Retinal blood vessel segmentation based on the Gaussian matched filter and U-net. 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), IEEE. https://doi.org/10.1109/CISP-BMEI.2017.8302199
Sreejini KS, Govindan VK: Improved multiscale matched filter for retina vessel segmentation using PSO algorithm. Egypt Inform J 16(3):253-260, 2015. https://doi.org/10.1016/j.eij.2015.06.004
Singh NP, Srivastava R: Retinal blood vessels segmentation by using Gumbel probability distribution function based matched filter. Comput Methods Programs Biomed 129:40-50, 2016. https://doi.org/10.1016/j.cmpb.2016.03.001
Moghimirad E, Rezatofighi SH, Soltanian-Zadeh H: Retinal vessel segmentation using a multi-scale medialness function. Comput Biol Med 42(1):50-60, 2012. https://doi.org/10.1016/j.compbiomed.2011.10.008
Hu K, Zhang Z, Niu X, Zhang Y, Cao C, Xiao F, Gao X: Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing 309:179-191, 2018. https://doi.org/10.1016/j.neucom.2018.05.011
Zhang L, Fisher M, Wang W: Retinal vessel segmentation using multi-scale textons derived from keypoints. Comput Med Imaging Graph 45:47-56, 2015. https://doi.org/10.1016/j.compmedimag.2015.07.006
Nguyen UTV, Bhuiyan A, Park LAF et al: An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recognit 46(3):703-715, 2013. https://doi.org/10.1016/j.patcog.2012.08.009
Khan MAU, Khan TM, Bailey DG, Soomro TA: A generalized multi-scale line-detection method to boost retinal vessel segmentation sensitivity. Pattern Anal Appl 22(3):1177-1196, 2019. https://doi.org/10.1007/s10044-018-0696-1
Zaki SKM, Zulkifley MA, Nazari A: Tracing of retinal blood vessels through edge information. 2014 IEEE International Conference on Control System, Computing and Engineering (ICCSCE 2014), Batu Ferringhi, pp 13–17, 2014. https://doi.org/10.1109/ICCSCE.2014.7072681
Li Q, You J, Wang J, Wong A: A fully automated system for retinal vessel tortuosity diagnosis using scale dependent vessel tracing and grading. 2010 IEEE 23rd International Symposium on Computer-Based Medical Systems (CBMS), Perth, WA, pp 221–225, 2010. https://doi.org/10.1109/CBMS.2010.6042645
Zhang J, Li H, Nie Q, Cheng L: A retinal vessel boundary tracking method based on Bayesian theory and multi-scale line detection. Comput Med Imaging Graph 38(6):517-525, 2014. https://doi.org/10.1016/j.compmedimag.2014.05.010
Hassan G, El-Bendary N, Hassanien AE et al: Retinal blood vessel segmentation approach based on mathematical morphology. Procedia Comput Sci 65:612-622, 2015. https://doi.org/10.1016/j.procs.2015.09.005
Zana F, Klein JC: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans Image Process 10(7):1010-1019, 2001. https://doi.org/10.1109/83.931095
Leandro JJG, Cesar J, Jelinek HF: Blood vessels segmentation in retina: preliminary assessment of the mathematical morphology and of the wavelet transform techniques. Proceedings XIV Brazilian Symposium on Computer Graphics and Image Processing, Florianopolis, Brazil, pp 84–90, 2001. https://doi.org/10.1109/SIBGRAPI.2001.963041
Rodrigues LC, Marengoni M: Segmentation of optic disc and blood vessels in retinal images using wavelets, mathematical morphology and Hessian-based multi-scale filtering. Biomed Signal Process Control 36:39-49, 2017. https://doi.org/10.1016/j.bspc.2017.03.014
Akram MU, Khan SA: Multilayered thresholding-based blood vessel segmentation for screening of diabetic retinopathy. Eng Comput 29(2):165-173, 2013. https://doi.org/10.1007/s00366-011-0253-7
Jiang X, Mojon D: Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Trans Pattern Anal Mach Intell 25(1):131-137, 2003. https://doi.org/10.1109/TPAMI.2003.1159954
Dash J, Bhoi N: Retinal blood vessel segmentation using Otsu thresholding with principal component analysis. 2018 2nd International Conference on Inventive Systems and Control (ICISC), Coimbatore, pp 933–937, 2018. https://doi.org/10.1109/ICISC.2018.8398938
Maninis KK, Pont-Tuset J, Arbeláez P, Van Gool L: Deep retinal image understanding. In: Ourselin S, Joskowicz L, Sabuncu M, Unal G, Wells W (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. MICCAI 2016. Lecture Notes in Computer Science, vol 9901. Springer, Cham, 2016. https://doi.org/10.1007/978-3-319-46723-8_17
Singh S, Tiwari RK: A Review on Retinal Vessel Segmentation and Classification Methods. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), IEEE, 2019. https://doi.org/10.1109/ICOEI.2019.8862555
Yao Z, Zhang Z, Xu LQ: Convolutional Neural Network for Retinal Blood Vessel Segmentation. 2016 9th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, pp 406–409, 2016. https://doi.org/10.1109/ISCID.2016.1100
Nazir T, Irtaza A, Javed A, Malik H, Hussain D, Naqvi RA: Retinal image analysis for diabetes-based eye disease detection using deep learning. Appl Sci 10(18):6185, 2020. https://doi.org/10.3390/app10186185
Badar M, Haris M, Fatima A: Application of deep learning for retinal image analysis: A review. Comput Sci Rev 35:100203, 2020. https://doi.org/10.1016/j.cosrev.2019.100203
Upadhyay K, Agrawal M, Vashist P: Unsupervised multiscale retinal blood vessel segmentation using fundus images. IET Image Process 14(11):2616-2625, 2020. https://doi.org/10.1049/iet-ipr.2019.0969
Speedy DB, Rogers IR, Noakes TD et al: Diagnosis and prevention of hyponatremia at an ultradistance triathlon. Clin J Sport Med 10(1):52-58, 2000.
Castaneda C, Nalley K, Mannion C et al: Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine. J Clin Bioinform 5:4, 2015. https://doi.org/10.1186/s13336-015-0019-3
Kaur J, Mittal D: A generalized method for the detection of vascular structure in pathological retinal images. Biocybern Biomed Eng 37(1):184-200, 2017. https://doi.org/10.1016/j.bbe.2016.09.002
Ravishankar S, Jain A, Mittal A: Automated feature extraction for early detection of diabetic retinopathy in fundus images. 2009 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2009. https://doi.org/10.1109/CVPR.2009.5206763
Perez L, Wang J: The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621, 2017.
Samarabandu J, Acharya R, Hausmann E et al: Analysis of bone X-rays using morphological fractals. IEEE Trans Med Imaging 12(3):466-470, 1993. https://doi.org/10.1109/42.241873
Sekhar S, Al-Nuaimy W, Nandi AK: Automated localisation of optic disk and fovea in retinal fundus images. 2008 16th European Signal Processing Conference, IEEE, 2008.
Fraz MM, Remagnino P, Hoppe A et al: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans Biomed Eng 59(9):2538-2548, 2012. https://doi.org/10.1109/TBME.2012.2205687
Sela I, Ashkenazy H, Katoh K, Pupko T: GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Res 43(W1):W7-W14, 2015. https://doi.org/10.1093/nar/gkv318
Das V, Dandapat S, Bora PK: A novel diagnostic information based framework for super-resolution of retinal fundus images. Comput Med Imaging Graph 72:22-33, 2019. https://doi.org/10.1016/j.compmedimag.2019.01.002
Imran A, Li J, Pei Y, Yang JJ, Wang Q: Comparative analysis of vessel segmentation techniques in retinal images. IEEE Access 7:114862-114887, 2019. https://doi.org/10.1109/ACCESS.2019.2935912
Franklin SW, Rajan SE: Computerized screening of diabetic retinopathy employing blood vessel segmentation in retinal images. Biocybern Biomed Eng 34(2):117-124, 2014. https://doi.org/10.1016/j.bbe.2014.01.004
Mary VS, Rajsingh EB, Naik GR: Retinal fundus image analysis for diagnosis of glaucoma: a comprehensive survey. IEEE Access, 2016. http://hdl.handle.net/10453/122945
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Ethics Approval
All applicable institutional and/or national guidelines for the care and use of animals were followed.
Informed Consent
For this type of study, formal consent is not required.
Conflict of Interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Panda, N.R., Sahoo, A.K. A Detailed Systematic Review on Retinal Image Segmentation Methods. J Digit Imaging 35, 1250–1270 (2022). https://doi.org/10.1007/s10278-022-00640-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10278-022-00640-9