Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The Normal Mode Analysis Shape Detection Method for Automated Shape Determination of Lung Nodules

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Surface morphology and shape in general are important predictors for the behavior of solid-type lung nodules detected on CT. More broadly, shape analysis is useful in many areas of computer-aided diagnosis and essentially all scientific and engineering disciplines. Automated methods for shape detection have all previously, to the author’s knowledge, relied on some sort of geometric measure. I introduce Normal Mode Analysis Shape Detection (NMA-SD), an approach that measures shape indirectly via the motion it would undergo if one imagined the shape to be a pseudomolecule. NMA-SD allows users to visualize internal movements in the imaging object and thereby develop an intuition for which motions are important, and which geometric features give rise to them. This can guide the identification of appropriate classification features to distinguish among classes of interest. I employ normal mode analysis (NMA) to animate pseudomolecules representing simulated lung nodules. Doing so, I am able to assign a testing set of nodules into the classes circular, elliptical, and irregular with roughly 97 % accuracy. This represents a proof-of-principle that one can obtain shape information by treating voxels as pseudoatoms in a pseudomolecule, and analyzing the pseudomolecule’s predicted motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. El-Baz A, Nitzken M, Elnakib A, et al: 3D shape analysis for early diagnosis of malignant lung nodules. Medical image computing and computer-assisted intervention: MICCAI International Conference on Medical Image Computing and Computer-Assisted Intervention. 14(Pt 3):175–182, 2011

  2. Webb WRHC: Thoracic Imaging: Pulmonary and Cardiovascular Radiology. 2nd edition. Wolters Kluwer, 2011

  3. Jacobson FL, Judy PF, Feldman U, Seltzer SE: Perceived features reported as nodules: interpretation of spiral chest CT scans. Acad Radiol 7(2):77–82, 2000

    Article  CAS  PubMed  Google Scholar 

  4. McWilliams A, Tammemagi MC, Mayo JR, et al: Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med 369(10):910–919, 2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Ko JP, Rusinek H, Jacobs EL, et al: Small pulmonary nodules: volume measurement at chest CT–phantom study. Radiology 228(3):864–870, 2003

    Article  PubMed  Google Scholar 

  6. Ko JP, Berman EJ, Kaur M, et al: Pulmonary Nodules: growth rate assessment in patients by using serial CT and three-dimensional volumetry. Radiology 262(2):662–671, 2012

    Article  PubMed Central  PubMed  Google Scholar 

  7. Nie Y, Li Q, Li F, Pu Y, Appelbaum D, Doi K: Integrating PET and CT information to improve diagnostic accuracy for lung nodules: A semiautomatic computer-aided method. J Nucl Med Off Publ Soc Nucl Med 47(7):1075–1080, 2006

    Google Scholar 

  8. Iwano S, Nakamura T, Kamioka Y, Ishigaki T: Computer-aided diagnosis: a shape classification of pulmonary nodules imaged by high-resolution CT. Comput Med Imaging Graph Off J Comput Med Imaging Soc 29(7):565–570, 2005

    Article  Google Scholar 

  9. McNitt-Gray MF, Wyckoff N, Sayre JW, Goldin JG, Aberle DR: The effects of co-occurrence matrix based texture parameters on the classification of solitary pulmonary nodules imaged on computed tomography. Comput Med Imaging Graph Off J Comput Med Imaging Soc 23(6):339–348, 1999

    Article  CAS  Google Scholar 

  10. Stember JN, Ko JP, Naidich DP, Kaur M, Rusinek H: The self-overlap method for assessment of lung nodule morphology in chest CT. J Digit Imaging 26(2):239–247, 2013

    Article  PubMed Central  PubMed  Google Scholar 

  11. Shah SK, McNitt-Gray MF, Rogers SR, et al: Computer aided characterization of the solitary pulmonary nodule using volumetric and contrast enhancement features. Acad Radiol 12(10):1310–1319, 2005

    Article  PubMed  Google Scholar 

  12. Ruppert AM, Lerolle U, Carette MF, et al: Coexisting pulmonary nodules in operable lung cancer: prevalence and probability of malignancy. Lung Cancer 74(2):233–238, 2011

    Article  CAS  PubMed  Google Scholar 

  13. Li F, Sone S, Abe H, Macmahon H, Doi K: Malignant versus benign nodules at CT screening for lung cancer: comparison of thin-section CT findings. Radiology 233(3):793–798, 2004

    Article  PubMed  Google Scholar 

  14. Choi WJ, Choi TS: Automated pulmonary nodule detection based on three-dimensional shape-based feature descriptor. Comput Methods Prog Biomed 113(1):37–54, 2014

    Article  Google Scholar 

  15. Magalhaes Barros Netto S, Correa Silva A, Acatauassu Nunes R, Gattass M: Automatic segmentation of lung nodules with growing neural gas and support vector machine. Comput Biol Med 42(11):1110–1121, 2012

    Article  PubMed  Google Scholar 

  16. Diciotti S, Lombardo S, Falchini M, Picozzi G, Mascalchi M: Automated segmentation refinement of small lung nodules in CT scans by local shape analysis. IEEE Trans BioMed Eng 58(12):3418–3428, 2011

    Article  PubMed  Google Scholar 

  17. Murphy K, van Ginneken B, Schilham AM, de Hoop BJ, Gietema HA, Prokop M: A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification. Med Image Anal 13(5):757–770, 2009

    Article  CAS  PubMed  Google Scholar 

  18. Ye X, Lin X, Dehmeshki J, Slabaugh G, Beddoe G: Shape-based computer-aided detection of lung nodules in thoracic CT images. IEEE Trans BioMed Eng 56(7):1810–1820, 2009

    Article  PubMed  Google Scholar 

  19. Petrou M, Quint LE, Nan B, Baker LH: Pulmonary nodule volumetric measurement variability as a function of CT slice thickness and nodule morphology. AJR Am J Roentgenol 188(2):306–312, 2007

    Article  PubMed  Google Scholar 

  20. Gietema HA, Wang Y, Xu D, et al: Pulmonary nodules detected at lung cancer screening: interobserver variability of semiautomated volume measurements. Radiology 241(1):251–257, 2006

    Article  PubMed  Google Scholar 

  21. Huang YL, Chen DR, Jiang YR, Kuo SJ, Wu HK, Moon WK: Computer-aided diagnosis using morphological features for classifying breast lesions on ultrasound. Ultrasound Obstet Gynecol Off J Int Soc Ultrasound Obstet Gynecol 32(4):565–572, 2008

    Article  Google Scholar 

  22. Moon WK, Lo CM, Chang JM, Huang CS, Chen JH, Chang RF: Quantitative ultrasound analysis for classification of BI-RADS category 3 breast masses. J Digit Imaging 26(6):1091–1098, 2013

    Article  PubMed Central  PubMed  Google Scholar 

  23. Nie K, Chen JH, Yu HJ, Chu Y, Nalcioglu O, Su MY: Quantitative analysis of lesion morphology and texture features for diagnostic prediction in breast MRI. Acad Radiol 15(12):1513–1525, 2008

    Article  PubMed Central  PubMed  Google Scholar 

  24. Costa LF, Cesar RM: Shape analysis and classification : theory and practice. CRC Press, Boca Raton, 2001

    Google Scholar 

  25. Cui Q, Bahar I: Normal mode analysis : theory and applications to biological and chemical systems. Chapman & Hall/CRC, Boca Raton, 2006

    Google Scholar 

  26. Tirion MM: Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Analysis. Phys Rev Lett 77(9):1905–1908, 1996

    Article  CAS  PubMed  Google Scholar 

  27. Chacon P, Tama F, Wriggers W: Mega-Dalton biomolecular motion captured from electron microscopy reconstructions. J Mol Biol 326(2):485–492, 2003

    Article  CAS  PubMed  Google Scholar 

  28. Stember JN, Wriggers W: Bend-twist-stretch model for coarse elastic network simulation of biomolecular motion. J Chem Phys 131(7):074112, 2009

    Article  PubMed Central  PubMed  Google Scholar 

  29. Schneider PJ, Eberly DH: Geometric tools for computer graphics. Morgan Kaufmann Publishers, Amsterdam, 2003

    Google Scholar 

  30. Humphrey W, Dalke A, Schulten K: VMD: visual molecular dynamics. J Mol Graph 14(1):33–38, 1996. 27–8

    Article  CAS  PubMed  Google Scholar 

  31. Brooks BR, Brooks 3rd, CL, Mackerell Jr, AD, et al: CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614, 2009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Case DA, Cheatham 3rd, TE, Darden T, et al: The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688, 2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph N. Stember.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stember, J.N. The Normal Mode Analysis Shape Detection Method for Automated Shape Determination of Lung Nodules. J Digit Imaging 28, 224–230 (2015). https://doi.org/10.1007/s10278-014-9732-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-014-9732-x

Keywords

Navigation