Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Network congestion control with Markovian multipath routing

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper we consider an integrated model for TCP/IP protocols with multipath routing. The model combines a Network Utility Maximization for rate control based on end-to-end queueing delays, with a Markovian Traffic Equilibrium for routing based on total expected delays. We prove the existence of a unique equilibrium state which is characterized as the solution of an unconstrained strictly convex program. A distributed algorithm for solving this optimization problem is proposed, with a brief discussion of how it could be implemented by adapting the current Internet protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adler, M., Cai, J.Y., Shapiro, J., Towsley, D.: Estimation of congestion price using probabilistic packet marking, pp. 1–36. Technical Report (2002)

  2. Baillon, J., Cominetti, R.: Markovian traffic equilibrium. Math. Programm. 111, 33–56 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barré, S., Paasch, C., Bonaventure, O.: Multipath TCP: from theory to practice. Proceedings of the 10th International IFIP TC 6 Conference on Networking—Part I, pp. 444–457. Springer, Berlin (2011)

  4. Beckman, M., McGuire, C., Winsten, C.: Studies in Economics of Transportation. Yale University Press, New Haven (1956)

  5. Cao, Z., Wang, Z., Zegura, E.: Performance of hashing-based schemes for internet load balancing. In: INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE, vol. 1, pp. 332–341 (2000). doi:10.1109/INFCOM.2000.832203

  6. Cominetti, R., Guzmán, C., Maureira, J.: Implementation of a distributed protocol for network congestion control with markovian multipath routing. Forthcoming (2014)

  7. Dumas, V., Guillemin, F., Robert, P.: A markovian analysis of additive-increase multiplicative-decrease (aimd) algorithms. Adv. Appl. Prob. 34, 85–111 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gallager, R.: A minimum delay routing algorithm using distributed computation. IEEE Trans. Commun. 25(1), 73–85 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gibbens, R., Kelly, F.: Resource pricing and the evolution of congestion control. Automatica 35, 1969–1985 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gojmerac, I.: Adaptive Multipath Routing for Internet Traffic Engineering. Ph.D. Thesis, Technische Universitat Wien (2007)

  11. Han, H., Shakkottai, S., Hollot, C.V., Srikant, R., Towsley, D.: Overlay TCP for multi-path routing and congestion control. ENS-INRIA ARC-TCP Workshop, Paris, France (2004)

  12. He, J., Rexford, J.: Towards internet-wide multipath routing. IEEE Netw. 22(2), 16–21 (2008)

    Article  Google Scholar 

  13. Kelly, F., Massoulié, L., Walton, N.: Resource pooling in congested networks: proportional fairness and product form. Queueing Syst. 63(1–4), 165–194 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kelly, F., Maulloo, A., Tan, D.: Rate control for communication networks: shadow prices, proportional fairness and stability. J. Oper. Res. Soc. 49(3), 237–252 (1998)

    Article  MATH  Google Scholar 

  15. Kelly, F.P., Voice, T.: Stability of end-to-end algorithms for joint routing and rate control. Comput. Commun. Rev. 35(2), 5–12 (2005)

    Article  Google Scholar 

  16. Key, P.B., Massoulié, L., Towsley, D.F.: Path selection and multipath congestion control. Commun. ACM 54(1), 109–116 (2011)

    Article  Google Scholar 

  17. Kunniyur, S., Srikant, R.: End-to-end congestion control schemes: utility functions, random losses and ECN marks. IEEE/ACM Trans. Netw. 11(5), 689–702 (2003)

    Article  Google Scholar 

  18. Lee, G.M., Choi, J.S.: A survey of multipath routing for traffic engineering. Available trhough http://www.slashdocs.com/ivmqst/a-survey-of-multipath-routing.html (2002)

  19. Lin, X., Shroff, N.: Utility maximization for communication networks with multipath routing. IEEE Trans. Autom. Control 51(5), 766–781 (2006)

    Article  MathSciNet  Google Scholar 

  20. Low, S.: A duality model of TCP and queue management algorithms. IEEE/ACM Trans. Netw. 11(4), 525–536 (2003)

    Article  MathSciNet  Google Scholar 

  21. Low, S., Paganini, F., Doyle, J.: Internet congestion control. IEEE Control Syst. Mag. 22(1), 28–43 (2002)

    Article  Google Scholar 

  22. Low, S., Peterson, L., Wang, L.: Understanding vegas: a duality model. J. ACM 49(2), 207–235 (2002)

    Article  MathSciNet  Google Scholar 

  23. Nagourney, A.: The negation of the braess paradox as demand increases: the wisdom of crowds in transportation networks. Europhys. Lett. 91(4), 48002 (2010)

    Article  Google Scholar 

  24. Padhye, J., Firoiu, V., Towsley, D., Kurose, J.: Modeling TCP reno performance: a simple model and its empirical validation. IEEE/ACM Trans. Netw. 8(2), 133–145 (2000)

    Article  Google Scholar 

  25. Paganini, F.: Congestion control with adaptive multipath routing based on optimization. Inform. Sci. Syst. 1, 333–338 (2006)

    Google Scholar 

  26. Paganini, F., Mallada, E.: A unified approach to congestion control and node-based multipath routing. IEEE/ACM Trans. Netw. 17(5), 1413–1426 (2009)

    Article  Google Scholar 

  27. Roughgarden, T.: On the severity of braess’s paradox: Designing networks for selfish users is hard. J. Comput. Syst. Sci. 72(5), 922–953 (2006)

    Google Scholar 

  28. Saibene, J.P., Lempert, R., Paganini, F.: An implementation of optimal dynamic load balancing based on multipath ip routing. In: GLOBECOM, pp. 1–5 (2010)

  29. Villamizar, C.: Mpls optimized multipath (mpls-omp). Internet Draft, draft-ietf- mpls-omp-01. http://tools.ietf.org/html/draft-villamizar-mpls-omp-01 (1999)

  30. Walton, N.S.: Proportional fairness and its relationship with multi-class queueing networks. Ann. Appl. Prob. 19(6), 2301–2333 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wardrop, J.G.: Some theoretical aspects of road traffic research. Proc. Inst. Civil Eng. Part II 1, 325–378 (1952)

    Google Scholar 

  32. Xu, D., Chiang, M., Rexford, J.: Link-state routing with hop-by-hop forwarding can achieve optimal traffic engineering. IEEE/ACM Trans. Netw. 19(6), 1717–1730 (2011)

    Article  Google Scholar 

  33. Yaïche, H., Mazumdar, R., Rosenberg, C.: A game theoretic framework for rate allocation and charging of available bit rate (abr) connections in atm networks. In: Broadband, Communications, pp. 222–233 (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristóbal Guzmán.

Additional information

Partially supported by FONDECYT 1100046 and Instituto Milenio Sistemas Complejos de Ingeniería.

A preliminary short version of this paper was published in the Proceedings of the 5th International Conference on Network Games, Control and Optimization (NetGCOOP’2011, Paris).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cominetti, R., Guzmán, C. Network congestion control with Markovian multipath routing. Math. Program. 147, 231–251 (2014). https://doi.org/10.1007/s10107-013-0719-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-013-0719-z

Keywords

Mathematics Subject Classification