Abstract
Itinerary planning is a challenging task for users wishing to enjoy points of interest (POIs) in line with their preferences, the current context of use, and travel constraints. This article describes an approach to exploit linked open data (LOD) to perform a context-aware recommendation of personalized itineraries with related multimedia content. The recommendation process takes into account the user profile, the context of use, and the characteristics of the POIs extracted from LOD. The system, therefore, consists of six main modules that accomplish the following tasks: (i) the creation of the user profile according to her interests and preferences; (ii) the elicitation of the current context of use; (iii) the extraction and filtering of POIs from LOD through customized and dynamic queries; (iv) the itinerary construction to determine the first K itineraries that match the query; (v) their ranking through a score function that considers several factors, such as the POI popularity, the POI diversity in terms of their categories, the distance and the travel time of the itinerary, the user profile, and her physical and social context; (vi) the recommendation of multimedia and textual contents related to the itinerary suggested to the target user. The results of experimental tests performed on 50 real users show the benefits of the proposed recommender not only in terms of normalized discounted cumulative gain (nDCG), but also in terms of precision and beyond-accuracy metrics.
Similar content being viewed by others
References
Ricci F, Rokach L, Shapira B (2015) Recommender systems handbook, 2nd edn. Springer Science+Business Media, New York
Heitmann B, Hayes C (2010) Using linked data to build open, collaborative recommender systems. In: Linked data meets artificial intelligence, papers from the 2010 AAAI spring symposium, technical report SS-10-07, Stanford, California, USA, March 22-24, 2010, AAAI
Di Noia T, Ostuni VC (2015) Recommender systems and linked open data. In: Reasoning Web. Web Logic Rules: 11th international summer school 2015. Springer International Publishing, pp 88–113
Gasparetti F (2017) Personalization and context-awareness in social local search: state-of-the-art and future research challenges. Pervasive Mob Comput 38:446–473. https://doi.org/10.1016/j.pmcj.2016.04.004 https://doi.org/10.1016/j.pmcj.2016.04.004. http://www.sciencedirect.com/science/article/pii/S157411921630027X http://www.sciencedirect.com/science/article/pii/S157411921630027X
Zhao S, King I, Lyu MR (2016) A survey of point-of-interest recommendation in location-based social networks. CoRR
Hyvönen E (2012) Publishing and using cultural heritage linked data on the semantic web, 1st edn. Morgan & Claypool, Palo Alto
Ruotsalo T, Haav K, Stoyanov A, Roche S, Fani E, Deliai R, Mäkelä E, Kauppinen T, Hyvönen E (2013) Smartmuseum: a mobile recommender system for the web of data. Web Semant Sci Serv Agents World Wide Web 20:50–67
Varfolomeyev A, Korzun D, Ivanovs A, Soms H, Petrina O (2015) Smart space based recommendation service for historical tourism. Procedia Comput Sci 77:85–91. https://doi.org/10.1016/j.procs.2015.12.363 https://doi.org/10.1016/j.procs.2015.12.363. http://www.sciencedirect.com/science/article/pii/S1877050915038739 http://www.sciencedirect.com/science/article/pii/S1877050915038739
Lo Bue A, Wecker AJ, Kuflik T, Machì A, Stock O (2015) Providing personalized cultural heritage information for the smart region - a proposed methodology. In: Proceedings of (UMAP 2015), pp 1–7
Wang Y, Stash N, Aroyo L, Hollink L, Schreiber G (2009) Semantic relations for content-based recommendations. In: Proceedings of K-CAP ’09. ACM, New York, NY, USA, pp 209–210
Di Noia T, Mirizzi R, Ostuni VC, Romito D, Zanker M (2012) Linked open data to support content-based recommender systems. In: Proceedings of the 8th international conference on semantic systems. I-SEMANTICS ’12. ACM, New York, NY, USA, pp 1–8
Berners-Lee T (2009) Linked-data design issues W3C design issue document. http://www.w3.org/DesignIssue/LinkedData.html
Ostuni VC, Di Noia T, Mirizzi R, Romito D, Di Sciascio E (2012) Cinemappy: a context-aware mobile app for movie recommendations boosted by dbpedia. In: Proceedings of the 2012 international conference on semantic technologies meet recommender systems. SeRSy’12, pp 37–48
Staab S, Werthner H, Ricci F, Zipf A, Gretzel U, Fesenmaier DR, Paris C, Knoblock C (2002) Intelligent systems for tourism. IEEE Intell Syst 17(6):53–64
Ricci F (2010) Mobile recommender systems. Inf Technol Tourism 12(3):205–231
Lu J, Wu D, Mao M, Wang W, Zhang G (2015) Recommender system application developments: a survey. Decis Support Syst 74:12–32
Gavalas D, Konstantopoulos C, Mastakas K, Pantziou G (2014) Mobile recommender systems in tourism. J Netw Comput Appl 39:319–333
Golden BL, Levy L, Vohra R (1987) The orienteering problem. Nav Res Logist 34(3):307–318. https://doi.org/10.1002/1520-6750(198706)34:3<307::AID-NAV3220340302>3.0.CO;2-D. https://onlinelibrary.wiley.com/doi/abs/10.1002/1520-6750%28198706%2934%3A3%3C307%3A%3AAIDNAV3220340302%3E3.0.CO%3B2-D
Gunawan A, Lau HC, Vansteenwegen P (2016) Orienteering problem: a survey of recent variants, solution approaches and applications. Eur J Oper Res 255:315–332
Vansteenwegen P, Souffriau W, Oudheusden DV (2011) The orienteering problem: a survey. Eur J Oper Res 209(1):1–10
Gavalas D, Konstantopoulos C, Mastakas K, Pantziou G (2014) A survey on algorithmic approaches for solving tourist trip design problems. J Heuristics 20(3):291–328
Souffriau W, Vansteenwegen P, Vertommen J, Berghe GV, Oudheusden DV (2008) A personalized tourist trip design algorithm for mobile tourist guides. Appl Artif Intell 22(10):964– 985
Vansteenwegen P, Souffriau W, Vanden Berghe G, Van Oudheusden D (2009) Iterated local search for the team orienteering problem with time windows. Comput Oper Res 36(12):3281– 3290
Gavalas D, Konstantopoulos C, Mastakas K, Pantziou G, Tasoulas Y (2013) Cluster-based heuristics for the team orienteering problem with time windows. In: Bonifaci V, Demetrescu C, Marchetti-Spaccamela A (eds) Experimental algorithms. Springer, Berlin, pp 390–401
Likas A, Vlassis NA, Verbeek JJ (2003) The global k-means clustering algorithm. Pattern Recogn 36 (2):451–461
Gavalas D, Kasapakis V, Konstantopoulos C, Pantziou GE, Vathis N, Zaroliagis CD (2015) The eCOMPASS multimodal tourist tour planner. Expert Syst Appl 42(21):7303–7316
Lim KH, Chan J, Leckie C, Karunasekera S (2018) Personalized trip recommendation for tourists based on user interests, points of interest visit durations and visit recency. Knowl Inf Syst 54(2):375–406
Gavalas D, Kasapakis V, Konstantopoulos C, Pantziou GE, Vathis N (2017) Scenic route planning for tourists. Pers Ubiquit Comput 21(1):137–155
Vansteenwegen P, Souffriau W, Berghe GV, Oudheusden DV (2011) The city trip planner. Expert Syst Appl 38(6):6540–6546
Wörndl W, Hefele A, Herzog D (2017) Recommending a sequence of interesting places for tourist trips. Inf Technol Tourism, pp 1–24
Sylejmani K, Dorn J, Musliu N (2017) Planning the trip itinerary for tourist groups. Inf Technol Tourism 17(3):275–314
Popescu A, Grefenstette G (2009) Deducing trip related information from Flickr. In: Proceedings of the 18th international conference on world wide web. WWW ’09. ACM, New York, NY, USA, pp 1183–1184
Thomee B, Shamma DA, Friedland G, Elizalde B, Ni K, Poland D, Borth D, Li LJ (2016) YFCC100M: The new data in multimedia research. Commun ACM 59(2):64–73
Dey AK (2001) Understanding and using context. Pers Ubiquit Comput 5(1):4–7
Gao H, Tang J, Liu H (2012) gSCorr: modeling geo-social correlations for new check-ins on location-based social networks. In: Proceedings of CIKM ’12. ACM, New York, NY, USA, pp 1582–1586
Zhang T (2004) Solving large scale linear prediction problems using stochastic gradient descent algorithms. In: Proceedings of ICML ’04. ACM, p 116
Vrandečić D, Krötzsch M (2014) Wikidata: a free collaborative knowledgebase. Commun ACM 57 (10):78–85. https://doi.acm.org/10.1145/2629489 https://doi.acm.org/10.1145/2629489
Passant A (2010) Measuring semantic distance on linking data and using it for resources recommendations. In: AAAI spring symposium: linked data meets artificial intelligence. AAAI Press, pp 93–98
Micsik A, Turbucz S, Tóth Z (2015) Exploring publication metadata graphs with the Lodmilla browser and editor. Int J Digital Libraries 16(1):15–24
McNee SM, Riedl J, Konstan JA (2006) Being accurate is not enough: how accuracy metrics have hurt recommender systems. In: CHI ’06 extended abstracts on human factors in computing systems. CHI EA ’06. ACM, New York, NY, USA, pp 1097– 1101
Järvelin K, Kekäläinen J (2002) Cumulated gain-based evaluation of IR techniques. ACM Trans Inf Syst 20(4):422–446
Onori M, Micarelli A, Sansonetti G (2016) A comparative analysis of personality-based music recommender systems. In: CEUR workshop proceedings. Volume 1680 of CEUR workshop proceedings. Aachen, Germany, CEUR-WS.org, pp 55–59
Sansonetti G, Gurini DF, Gasparetti F, Micarelli A (2017) Dynamic social recommendation. In: Proceedings of the 2017 IEEE/ACM international conference on advances in social networks analysis and mining 2017. ASONAM ’17. ACM, New York, NY, USA, pp 943–947
Gurini DF, Gasparetti F, Micarelli A, Sansonetti G (2018) Temporal people-to-people recommendation on social networks with sentiment-based matrix factorization. Futur Gener Comput Syst 78:430–439. https://doi.org/10.1016/j.future.2017.03.020 https://doi.org/10.1016/j.future.2017.03.020. http://www.sciencedirect.com/science/article/pii/S0167739X17304077 http://www.sciencedirect.com/science/article/pii/S0167739X17304077
Musto C, Narducci F, Lops P, De Gemmis M, Semeraro G (2016) Explod: a framework for explaining recommendations based on the linked open data cloud. In: Proceedings of the 10th ACM conference on recommender systems. RecSys ’16. ACM, New York, NY, USA
Musto C, Narducci F, Lops P, de Gemmis M, Semeraro G (2018) Linked open data-based explanations for transparent recommender systems. Int J Hum Comput Stud 121:93–107. https://doi.org/10.1016/j.ijhcs.2018.03.003. http://www.sciencedirect.com/science/article/pii/S1071581918300946
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Fogli, A., Sansonetti, G. Exploiting semantics for context-aware itinerary recommendation. Pers Ubiquit Comput 23, 215–231 (2019). https://doi.org/10.1007/s00779-018-01189-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00779-018-01189-7