Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Optimal operation and planning of hybrid AC/DC power systems using multi-objective grasshopper optimization algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Optimal power flow (OPF) in a hybrid alternating current and multi-terminal high-voltage direct current (AC-MTHVDC) grid is currently one of the most popular optimization problems in modern power systems. The critical necessity of addressing global warming and reducing generation costs is encouraging the integration of eco-friendly renewable energy sources (RESs) into the OPF problem. In this direction, the present research has centred on the formulation and solution of the multi-objective (MO) AC-MTHVDC-OPF problem incorporating RESs such as wind, solar, small-hydro, and tidal power. The available power of RESs is calculated by means of the Weibull, lognormal, and Gumbel probability density functions. The proposed MO-OPF optimizes the double and triple configurations of various objective functions, including total cost, the total cost with the valve-point effect, the total cost with emission and carbon tax, voltage deviation, and power loss. Multi-objective grasshopper optimization algorithm (MOGOA) is applied to find non-dominated Pareto-optimal solutions of the non-convex, nonlinear and high-dimensional MO/AC-MTHVDC-OPF problem. The obtained results are compared with the results of MSSA, MODA, MOALO, and MO_Ring_PSO_SCD algorithms. The comparison of results gives that MOGOA outperforms competitive optimizers with respect to the quality of Pareto-optimal solutions and their distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

OPF:

Optimal power flow

MTHVDC:

Multi-terminal high-voltage direct current

AC:

Alternating current

MO:

Multi-objective

RESs:

Renewable energy sources

MOGOA:

Multi-objective grasshopper optimization algorithm

MSSA:

Multi-objective salp swarm algorithm

MODA:

Multi-objective dragonfly algorithm

MOALO:

Multi-objective ant lion optimizer

MO_Ring_PSO_SCD:

Multi-objective particle swarm optimization using ring topology and special crowding distance

IEEE:

The institute of electrical and electronics engineers

VSC:

Voltage source converter

HVDC:

High-voltage direct current

PDFs:

Probability density functions

MO/AC-MTHVDC-OPF:

Multi-objective alternating current multi-terminal high voltage direct current optimal power flow

\({S}_{ab}\) :

MVA injected into the VSCs of the AC grid

\({R}_{\mathrm{dc}}\) :

Resistance of DC line

\({V}_{{c}_{b}}\) :

Magnitude of the controlled voltage source that is linked to AC buses

\({V}_{{s}_{a}}\) :

Voltage magnitude of AC bus

\({I}_{ab}\) :

Injected current into the VSCs of the AC grid

\({N}_{\mathrm{AC}-b}\) :

Number of AC buses that is linked to VSC

\({N}_{\mathrm{VSC}}\) :

Number of VSC

\({Pc}_{b}+{jQc}_{b}\) :

Active and reactive powers at each VSC

\({Ps}_{a}+{jQs}_{a}\) :

Active and reactive powers at AC side

\({\delta }_{ab}\) :

Phase angle difference between VSC and the attached AC side

\({P}_{{\text{TG}}_{1}}\) :

Active power output of slack generator

\({V}_{\text{L}}\) :

Voltage magnitude of load bus

\({Q}_{\mathrm{TG}}\) :

Reactive power of thermal generator

\({Q}_{\mathrm{WS}}\) :

Reactive power of wind generator

\({Q}_{\mathrm{PVSH}}\) :

Reactive power of combined solar PV/small-hydro system

\({Q}_{\mathrm{WS}+\mathrm{TDL}}\) :

Reactive power of combined wind-tidal energy system

\({S}_{L}\) :

Transmission line loading

\(\mathrm{NTG}\) :

Number of thermal generators

\(\mathrm{NPQ}\) :

Number of load buses

\(\mathrm{NWS}\) :

Number of wind power units

\(\mathrm{NPVSH}\) :

Number of combined solar PV/small-hydro power units

\(\mathrm{NWSTDL}\) :

Number of combined wind-tidal power units

\(\mathrm{NTL}\) :

Number of AC transmission lines

\({P}_{\mathrm{TG}}\) :

Power output from thermal generator

\({P}_{\mathrm{WS}}\) :

Power output from wind generator

\({P}_{\mathrm{PVSH}}\) :

Power output from combined solar PV/small-hydro energy unit

\({P}_{\mathrm{WS}+\mathrm{TDL}}\) :

Power output from combined wind-tidal energy unit

\({V}_{\text{G}}\) :

Voltage magnitude of generator buses

\(T\) :

Transformer tap setting ratio

\(\mathrm{NG}\) :

Number of generator buses

\(\mathrm{NT}\) :

Number of transformers

\({V}_{{\mathrm{dc}}_{i}}\) :

Voltage magnitude of i-th bus on DC grid

\({V}_{{c}_{i}}\) :

Voltage magnitude at the AC terminal of i-th VSC

\({P}_{{s}_{i}}\) :

Active power output from i-th connected converter to the AC side

\({Q}_{{s}_{i}}\) :

Reactive power output from i-th connected converter to the AC side

\({CF}_{0}\) :

Generation cost (in $/h) of thermal generators

\({m}_{i},{l}_{i}, {k}_{i}\) :

Cost coefficients of i-th thermal generator

\(CF\) :

Generation cost (in $/h) of thermal generator with valve-point effect

\({n}_{i}, {r}_{i}\) :

Valve-point effect coefficients for i-th thermal generator

\({{P}_{TGi}}^{\mathrm{min}}\) :

Minimum active power output from i-th thermal generator

\({E}_{\mathrm{total}}\) :

Total emission value

\({C}_{\mathrm{tax}}\) :

Carbon tax value

\({C}_{\mathrm{E}}\) :

Emission cost

\({\mu }_{i}\), \({\varphi }_{i}\), \({\acute{\alpha}}_{i}\), \({\gamma }_{i}\), \({\grave{\varepsilon}}_{i}\) :

Emission coefficients for i-th thermal generator

\({DC}_{\mathrm{W}}\) :

Direct cost for wind power

\(\mathrm{wp}\) :

Direct cost coefficient of the wind power

\({DC}_{\mathrm{PVSH}}\) :

Direct cost for combined solar PV/small-hydro power

\({P}_{\mathrm{PVSH},s}\) :

Scheduled power of solar PV unit

\({P}_{\mathrm{PVSH},sh}\) :

Scheduled power of small-hydro unit

\(\mathrm{pv}\) :

Cost coefficient of the solar PV power

\(\mathrm{sh}\) :

Cost coefficient of small-hydro power

\({DC}_{\mathrm{WSTDL}}\) :

Direct cost for combined wind-tidal power

\({P}_{\mathrm{TDLS}}\) :

Scheduled power of tidal energy

\(tdl\) :

Cost coefficient for tidal power

\({OC}_{\mathrm{W}}\) :

Over-estimation cost for wind power

\({UC}_{\mathrm{W}}\) :

Under-estimation cost for wind power

\({C}_{\mathrm{Ow}}\) :

Over-estimation cost coefficient for wind power

\({C}_{\mathrm{Uw}}\) :

Under-estimation cost coefficient for wind power

\({P}_{\mathrm{wav}}\) :

Available power from wind power plant

\({P}_{\mathrm{wr}}\) :

Rated power of wind power plant

\({OC}_{\mathrm{PVSH}}\) :

Over-estimation cost for combined solar PV/small-hydro power

\({UC}_{\mathrm{PVSH}}\) :

Under-estimation cost for combined solar PV/small-hydro power

\({C}_{\mathrm{Opvsh}}\) :

Over-estimation cost coefficient for combined solar PV/small-hydro power

\({C}_{\mathrm{Upvsh}}\) :

Under-estimation cost coefficient for combined solar PV/small-hydro power

\({P}_{\mathrm{PVSHav}}\) :

Available power from combined solar PV/small-hydro power plant

\({OC}_{\mathrm{TDL}}\) :

Over-estimation cost for tidal power

\({UC}_{\mathrm{TDL}}\) :

Under-estimation cost for tidal power

\({C}_{\mathrm{Otdl}}\) :

Over-estimation cost coefficient for tidal power

\({C}_{\mathrm{Utdl}}\) :

Under-estimation cost coefficient for tidal power

\({P}_{\mathrm{TDLav}}\) :

Available power from tidal power plant

\({F}_{\mathrm{obj}}\) :

Objective function

\({N}_{\mathrm{DC}}\) :

Number of buses on DC side

\({P}_{\mathrm{loss}\_\mathrm{AC}}\) :

AC grid active power loss

\({P}_{\mathrm{loss}\_\mathrm{DC}}\) :

DC grid active power loss

\({P}_{\mathrm{loss}\_\mathrm{VSC}}\) :

Active power loss at VSC

\({\psi }_{1}\), \({\psi }_{2}\), \({\psi }_{3}\) :

Power loss coefficients related to each VSC

\({I}_{c,i}\) :

The current of i-th VSC

\({N}_{\mathrm{AC}}\) :

Number of AC bus

\({P}_{Gi}\) :

Active power at generation bus i

\({P}_{Di}\) :

Active power demand at generation bus i

\({Q}_{Gi}\) :

Reactive power of the i-th generator

\({Q}_{Di}\) :

Reactive power of the i-th load bus

\({Q}_{ci}\) :

Reactive power compensation at bus i

\({G}_{ij}\) :

Conductance between bus i and bus j

\({B}_{ij}\) :

Susceptance between bus i and bus j

\({\delta }_{i}\), \({\delta }_{j}\) :

Voltage angle of the i-th and j-th AC bus

\({P}_{dc,i}\) :

Active power flow through a DC line (leaving DC bus i)

\({G}_{dc,ij}\) :

Conductance of the DC line between bus i and bus j

\({S}_{\mathrm{DC}}\) :

Transmission line loading of DC line

\({d}_{i}^{\mathrm{min}}, {d}_{i}^{\mathrm{max}}\) :

Minimum and maximum limits of the circle diameter related to the i-th VSC P-Q capability

\({P}_{0}, {Q}_{0}\) :

Circle center related to the i-th VSC P-Q capability

\({N}_{f}\) :

Number of DC transmission line

\({v}_{w}\) :

Wind speed (m/s)

\(\acute{\omega}\) , \(\lambda\) :

Weibull PDF scale and shape factors

\({f}_{v}\left({v}_{w}\right)\) :

Probability of wind speed

\({v}_{\mathrm{in}}\), \({v}_{{\rm r}},\) \({v}_{\mathrm{out}}\) :

Cut-in, rated and cut-out wind speeds

\({p}_{w}\) :

Output power from a wind turbine

\({p}_{\mathrm{wr}}\) :

Rated output power of wind turbine

\({f}_{w}\left({p}_{w}\right)\) :

Wind power probability

\(\xi , { \vartheta }\) :

Lognormal PDF mean and standard deviation parameters

\({G}_{\text{pv}}\) :

Solar irradiance

\({f}_{{G}_{\mathrm{pv}}}\left({G}_{\mathrm{pv}}\right)\) :

Probability of solar irradiance

\({P}_{\mathrm{pv}}\) :

Power output from solar PV unit

\({R}_{\mathrm{C}}\) :

Certain irradiance

\({Q}_{\mathrm{wsh}}\) :

River flow rate

\({f}_{Q}\left({Q}_{\mathrm{wsh}}\right)\) :

Probability of river flow rate

\(\ddot{\Upsilon}\), ψ:

Gumbel PDF scale and location parameters

\({Q}_{\mathrm{TDL}}\) :

Discharge rate

\({f}_{\mathrm{QTDL}}\left({Q}_{\mathrm{TDL}}\right)\) :

Probability of discharge rate

\(\zeta\), :

Gumbel PDF parameters

\(A\) :

Archive vector

\(P\) :

Population

\({O}_{\mathrm{A}}\) :

Objective function value of archive members

\({O}_{\mathrm{P}}\) :

Objective function value of solution candidates in population

\(\mathrm{PS}\) :

Pareto set

\(\mathrm{PF}\) :

Pareto front

MVAr:

Megavolt-ampere reactive

MW:

Megawatt

\({P}_{\mathrm{RES}}^{\mathrm{max}}\) :

Maximum active power output from renewable energy source

maxFEs:

Maximum number of fitness function evaluations

\({n}_{\mathrm{obj}}\) :

Number of objective functions

p.u:

Per unit

$/h:

Dollar per hour

References

  1. Karthik N, Parvathy AK, Arul R, Padmanathan K (2021) Multi-objective optimal power flow using a new heuristic optimization algorithm with the incorporation of renewable energy sources. Int J Energy Environ Eng 12(4):641–678

    Article  Google Scholar 

  2. Warid W (2020) Optimal power flow using the AMTPG-Jaya algorithm. Appl Soft Comput 91:106252

    Article  Google Scholar 

  3. Birogul S (2019) Hybrid harris hawk optimization based on differential evolution (HHODE) algorithm for optimal power flow problem. IEEE Access 7:184468–184488

    Article  Google Scholar 

  4. Duman S, Güvenç U, Sönmez Y, Yörükeren N (2012) Optimal power flow using gravitational search algorithm. Energy Convers Manage 59:86–95

    Article  Google Scholar 

  5. Sinsuphan N, Leeton U, Kulworawanichpong T (2013) Optimal power flow solution using improved harmony search method. Appl Soft Comput 13(5):2364–2374

    Article  Google Scholar 

  6. Bouchekara HREH, Abido MA, Boucherma MJEPSR (2014) Optimal power flow using teaching-learning-based optimization technique. Electric Power Syst Res 114:49–59

    Article  Google Scholar 

  7. Kılıç U (2015) Backtracking search algorithm-based optimal power flow with valve point effect and prohibited zones. Electr Eng 97(2):101–110

    Article  Google Scholar 

  8. Attia AF, El Sehiemy RA, Hasanien HM (2018) Optimal power flow solution in power systems using a novel sine-cosine algorithm. Int J Electr Power Energy Syst 99:331–343

    Article  Google Scholar 

  9. El-Hana Bouchekara HR, Abido MA, Chaib AE (2016) Optimal power flow using an improved electromagnetism-like mechanism method. Electric Power Compon Syst 44(4):434–449

    Article  Google Scholar 

  10. Guvenc U, Bakir H, Duman S, Ozkaya B (2020) Optimal power flow using manta ray foraging optimization. In: The international conference on artificial intelligence and applied mathematics in engineering, pp 136–149, Springer, Cham

  11. Abd El-sattar S, Kamel S, Ebeed M, Jurado F (2021) An improved version of salp swarm algorithm for solving optimal power flow problem. Soft Comput 25(5):4027–4052

    Article  Google Scholar 

  12. Shaheen AM, Elsayed AM, El-Sehiemy RA (2021) Optimal economic–environmental operation for AC-MTDC grids by improved crow search algorithm. IEEE Syst J 16(1):1270–1277

    Article  Google Scholar 

  13. Li Z, He J, Xu Y, Wang X (2018) An optimal power flow algorithm for AC/DC hybrid power systems with VSC-based MTDC considering converter power losses and voltage-droop control strategy. IEEJ Trans Electr Electron Eng 13(12):1690–1698

    Article  Google Scholar 

  14. Abdul-hamied DT, Shaheen AM, Salem WA, Gabr WI, El-sehiemy RA (2020) Equilibrium optimizer based multi dimensions operation of hybrid AC/DC grids. Alex Eng J 59(6):4787–4803

    Article  Google Scholar 

  15. Elattar EE, Shaheen AM, Elsayed AM, El-Sehiemy RA (2020) Optimal power flow with emerged technologies of voltage source converter stations in meshed power systems. IEEE Access 8:166963–166979

    Article  Google Scholar 

  16. Shaheen AM, El-Sehiemy RA, Elsayed AM, Elattar EE (2021) Multi-objective manta ray foraging algorithm for efficient operation of hybrid AC/DC power grids with emission minimisation. IET Gener Transm Distrib 15(8):1314–1336

    Article  Google Scholar 

  17. Feng W, Tjernberg LB, Mannikoff A, Bergman A (2013) A new approach for benefit evaluation of multiterminal VSC–HVDC using a proposed mixed AC/DC optimal power flow. IEEE Trans Power Deliv 29(1):432–443

    Article  Google Scholar 

  18. Hosseinzadeh M, Salmasi FR (2015) Robust optimal power management system for a hybrid AC/DC micro-grid. IEEE Trans Sustain Energy 6(3):675–687

    Article  Google Scholar 

  19. Zhao Q, García-González J, Gomis-Bellmunt O, Prieto-Araujo E, Echavarren FM (2017) Impact of converter losses on the optimal power flow solution of hybrid networks based on VSC-MTDC. Electric Power Syst Res 151:395–403

    Article  Google Scholar 

  20. Elsayed AM, Shaheen AM, Alharthi MM, Ghoneim SS, El-Sehiemy RA (2021) Adequate operation of hybrid AC/MT-HVDC power systems using an improved multi-objective marine predators optimizer. IEEE Access 9:51065–51087

    Article  Google Scholar 

  21. Biswas PP, Suganthan PN, Amaratunga GA (2017) Optimal power flow solutions incorporating stochastic wind and solar power. Energy Convers Manage 148:1194–1207

    Article  Google Scholar 

  22. Reddy SS (2017) Optimal power flow with renewable energy resources including storage. Electr Eng 99(2):685–695

    Article  Google Scholar 

  23. Khan IU, Javaid N, Gamage KA, Taylor CJ, Baig S, Ma X (2020) Heuristic algorithm based optimal power flow model incorporating stochastic renewable energy sources. IEEE Access 8:148622–148643

    Article  Google Scholar 

  24. Tang C, Liu M, Liu Q, Dong P (2020) A per-node granularity decentralized optimal power flow for radial distribution networks with PV and EV integration. Int J Electr Power Energy Syst 116:105513

    Article  Google Scholar 

  25. Duman S, Li J, Wu L, Yorukeren N (2021) Symbiotic organisms search algorithm-based security-constrained AC–DC OPF regarding uncertainty of wind, PV and PEV systems. Soft Comput 25(14):9389–9426

    Article  Google Scholar 

  26. Sulaiman MH, Mustaffa Z (2021) Solving optimal power flow problem with stochastic wind–solar–small hydro power using barnacles mating optimizer. Control Eng Pract 106:104672

    Article  Google Scholar 

  27. Kaymaz E, Duman S, Guvenc U (2021) Optimal power flow solution with stochastic wind power using the Lévy coyote optimization algorithm. Neural Comput Appl 33(12):6775–6804

    Article  Google Scholar 

  28. Khan IU, Javaid N, Taylor C J, Gamage KA, Xiandong MA (2020) Optimal power flow solution with uncertain RES using augmented grey wolf optimzation. In: 2020 IEEE international conference on power systems technology, pp 1–6, IEEE

  29. Guvenc U, Duman S, Kahraman HT, Aras S, Katı M (2021) Fitness-Distance Balance based adaptive guided differential evolution algorithm for security-constrained optimal power flow problem incorporating renewable energy sources. Appl Soft Comput 108:107421

    Article  Google Scholar 

  30. Pandya SB, Jariwala HR (2021) Equilibrium optimizer: Insights, balance, diversity for renewable energy resources based optimal power flow with multiple scenarios. Smart Sci 9(4):257–274

    Article  Google Scholar 

  31. Duman S, Li J, Wu L, Guvenc U (2020) Optimal power flow with stochastic wind power and FACTS devices: a modified hybrid PSOGSA with chaotic maps approach. Neural Comput Appl 32(12):8463–8492

    Article  Google Scholar 

  32. Dasgupta K, Roy PK, Mukherjee V (2020) Power flow based hydro-thermal-wind scheduling of hybrid power system using sine cosine algorithm. Electric Power Syst Res 178:106018

    Article  Google Scholar 

  33. Pham LH, Dinh BH, Nguyen TT, Phan VD (2021) Optimal operation of wind-hydrothermal systems considering certainty and uncertainty of wind. Alex Eng J 60(6):5431–5461

    Article  Google Scholar 

  34. Shaheen MA, Hasanien HM, Alkuhayli A (2021) A novel hybrid GWO-PSO optimization technique for optimal reactive power dispatch problem solution. Ain Shams Eng J 12(1):621–630

    Article  Google Scholar 

  35. Abdollahi A, Ghadimi AA, Miveh MR, Mohammadi F, Jurado F (2020) Optimal power flow incorporating FACTS devices and stochastic wind power generation using krill herd algorithm. Electronics 9(6):1043

    Article  Google Scholar 

  36. Elattar EE (2019) Optimal power flow of a power system incorporating stochastic wind power based on modified moth swarm algorithm. IEEE Access 7:89581–89593

    Article  Google Scholar 

  37. Rambabu M, VenkataNagesh Kumar G, Venkateswara Rao B, Sravan Kumar B (2021) Optimal power flow solution of an integrated power system using elephant herd optimization algorithm incorporating stochastic wind and solar power. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, pp 1–21

  38. Khamees AK, Abdelaziz AY, Eskaros MR, El-Shahat A, Attia MA (2021) Optimal power flow solution of wind-integrated power system using novel metaheuristic method. Energies 14(19):6117

    Article  Google Scholar 

  39. Ullah Z, Wang S, Radosavljević J, Lai J (2019) A solution to the optimal power flow problem considering WT and PV generation. IEEE Access 7:46763–46772

    Article  Google Scholar 

  40. Rizwan M, Hong L, Muhammad W, Azeem SW, Li Y (2021) Hybrid Harris Hawks optimizer for integration of renewable energy sources considering stochastic behavior of energy sources. Int Trans Electr Energy Syst 31(2):e12694

    Article  Google Scholar 

  41. Mirjalili SZ, Mirjalili S, Saremi S, Faris H, Aljarah I (2018) Grasshopper optimization algorithm for multi-objective optimization problems. Appl Intell 48(4):805–820

    Article  Google Scholar 

  42. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  43. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073

    Article  MathSciNet  Google Scholar 

  44. Mirjalili S, Jangir P, Saremi S (2017) Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Appl Intell 46(1):79–95

    Article  Google Scholar 

  45. Yue CT, Qu BY, Liang JJ (2018) A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems. IEEE Trans Evol Comput 22(5):805–817

    Article  Google Scholar 

  46. Ghasemi M, Ghavidel S, Ghanbarian MM, Gharibzadeh M, Vahed AA (2014) Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm. Energy 78:276–289

    Article  Google Scholar 

  47. Duman S, Akbel M, Kahraman HT (2021) Development of the multi-objective adaptive guided differential evolution and optimization of the MO-ACOPF for wind/PV/tidal energy sources. Appl Soft Comput 112:107814

    Article  Google Scholar 

  48. Kahraman H T, Duman S (2022) Multi-objective adaptive guided differential evolution for multi-objective optimal power flow ıncorporating wind-solar-small hydro-tidal energy sources. In: Differential evolution: from theory to practice, pp 341–365, Springer, Singapore

  49. Duman S, Li J, Wu L (2021) AC optimal power flow with thermal–wind–solar–tidal systems using the symbiotic organisms search algorithm. IET Renew Power Gener 15(2):278–296

    Article  Google Scholar 

  50. Biswas PP, Suganthan PN, Qu BY, Amaratunga GA (2018) Multiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro power. Energy 150:1039–1057

    Article  Google Scholar 

  51. Duman S, Kahraman HT, Guvenc U, Aras S (2021) Development of a Lévy flight and FDB-based coyote optimization algorithm for global optimization and real-world ACOPF problems. Soft Comput 25(8):6577–6617

    Article  Google Scholar 

  52. Vidyasagar S, Vijayakumar K, Sattianadan D, Fernandez SG (2016) Optimal placement of DG based on voltage stability index and voltage deviation index. Indian J Sci Technol 9(38):1–9

    Article  Google Scholar 

  53. Shaheen AM, Farrag SM, El-Sehiemy RA (2017) MOPF solution methodology. IET Gener Transm Distrib 11(2):570–581

    Article  Google Scholar 

  54. Biswas PP, Suganthan PN, Mallipeddi R, Amaratunga GA (2018) Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques. Eng Appl Artif Intell 68:81–100

    Article  Google Scholar 

  55. Renedo J, Ibrahim AA, Kazemtabrizi B, Garcia-Cerrada A, Rouco L, Zhao Q, Garcia-Gonzalez J (2019) A simplified algorithm to solve optimal power flows in hybrid VSC-based AC/DC systems. Int J Electr Power Energy Syst 110:781–794

    Article  Google Scholar 

  56. Sayah S (2018) Modified differential evolution approach for practical optimal reactive power dispatch of hybrid AC–DC power systems. Appl Soft Comput 73:591–606

    Article  Google Scholar 

  57. Roy R, Jadhav HT (2015) Optimal power flow solution of power system incorporating stochastic wind power using Gbest guided artificial bee colony algorithm. Int J Electr Power Energy Syst 64:562–578

    Article  Google Scholar 

  58. Panda A, Tripathy M (2014) Optimal power flow solution of wind integrated power system using modified bacteria foraging algorithm. Int J Electr Power Energy Syst 54:306–314

    Article  Google Scholar 

  59. Panda A, Tripathy M (2015) Security constrained optimal power flow solution of wind-thermal generation system using modified bacteria foraging algorithm. Energy 93:816–827

    Article  Google Scholar 

  60. Shi L, Wang C, Yao L, Ni Y, Bazargan M (2011) Optimal power flow solution incorporating wind power. IEEE Syst J 6(2):233–241

    Article  Google Scholar 

  61. Reddy SS, Bijwe PR, Abhyankar AR (2014) Real-time economic dispatch considering renewable power generation variability and uncertainty over scheduling period. IEEE Syst J 9(4):1440–1451

    Article  Google Scholar 

  62. Chang TP (2010) Investigation on frequency distribution of global radiation using different probability density functions. Int J Appl Sci Eng 8(2):99–107

    Google Scholar 

  63. Mujere N (2011) Flood frequency analysis using the Gumbel distribution. Int J Comput Sci Eng 3(7):2774–2778

    Google Scholar 

  64. Cabus P (2008) River flow prediction through rainfall–runoff modelling with a probability-distributed model (PDM) in Flanders, Belgium. Agric Water Manage 95(7):859–868

    Article  Google Scholar 

  65. Özkış A, Babalık A (2017) A novel metaheuristic for multi-objective optimization problems: the multi-objective vortex search algorithm. Inf Sci 402:124–148

    Article  Google Scholar 

  66. Babalik A, Ozkis A, Uymaz SA, Kiran MS (2018) A multi-objective artificial algae algorithm. Appl Soft Comput 68:377–395

    Article  Google Scholar 

  67. Akbel M, Kahraman H (2020) Çok Amaçlı Meta-Sezgisel Optimizasyon Algoritmalarının Performanslarının Karşılaştırılması. Mühendislik Bilimleri ve Tasarım Dergisi 8(5):185–199

    Article  Google Scholar 

  68. Dhiman G, Singh KK, Slowik A, Chang V, Yildiz AR, Kaur A, Garg M (2021) EMoSOA: a new evolutionary multi-objective seagull optimization algorithm for global optimization. Int J Mach Learn Cybern 12(2):571–596

    Article  Google Scholar 

  69. Deb K (2011) Multi-objective optimisation using evolutionary algorithms: an introduction. In: Multi-objective evolutionary optimisation for product design and manufacturing, pp 3–34. Springer, London

  70. Coello C A C, Lamont G B, Van Veldhuizen DA (2007). Evolutionary algorithms for solving multi-objective problems, vol. 5, pp 79-104, Springer, New York

  71. Karakoyun M, Ozkis A, Kodaz H (2020) A new algorithm based on gray wolf optimizer and shuffled frog leaping algorithm to solve the multi-objective optimization problems. Appl Soft Comput 96:106560

    Article  Google Scholar 

  72. Mirjalili S, Saremi S, Mirjalili SM, Coelho LDS (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47:106–119

    Article  Google Scholar 

  73. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimization algorithm: theory and application. Adv Eng Softw 105:30–47

    Article  Google Scholar 

  74. Arora S, Anand P (2019) Chaotic grasshopper optimization algorithm for global optimization. Neural Comput Appl 31(8):4385–4405

    Article  Google Scholar 

  75. Aras S, Gedikli E, Kahraman HT (2021) A novel stochastic fractal search algorithm with fitness-distance balance for global numerical optimization. Swarm Evol Comput 61:100821

    Article  Google Scholar 

  76. Kahraman HT, Bakir H, Duman S, Katı M, Aras S, Guvenc U (2022) Dynamic FDB selection method and its application: modeling and optimizing of directional overcurrent relays coordination. Appl Intell 52(5):4873–4908

    Article  Google Scholar 

  77. Kahraman HT, Aras S, Gedikli E (2020) Fitness-distance balance (FDB): a new selection method for meta-heuristic search algorithms. Knowl-Based Syst 190:105169

    Article  Google Scholar 

  78. IEEE 30-bus test system data http://labs.ece.uw.edu/pstca/pf30/pg_tca30bus.htm

  79. Chaib AE, Bouchekara HREH, Mehasni R, Abido MA (2016) Optimal power flow with emission and non-smooth cost functions using backtracking search optimization algorithm. Int J Electr Power Energy Syst 81:64–77

    Article  Google Scholar 

  80. Beerten J, Belmans R (2015) MatACDC-an open source software tool for steady-state analysis and operation of HVDC grids

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huseyin Bakir or Ugur Guvenc.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakir, H., Guvenc, U. & Kahraman, H.T. Optimal operation and planning of hybrid AC/DC power systems using multi-objective grasshopper optimization algorithm. Neural Comput & Applic 34, 22531–22563 (2022). https://doi.org/10.1007/s00521-022-07670-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07670-y

Keywords

Navigation