Abstract
Optimal power flow (OPF) in a hybrid alternating current and multi-terminal high-voltage direct current (AC-MTHVDC) grid is currently one of the most popular optimization problems in modern power systems. The critical necessity of addressing global warming and reducing generation costs is encouraging the integration of eco-friendly renewable energy sources (RESs) into the OPF problem. In this direction, the present research has centred on the formulation and solution of the multi-objective (MO) AC-MTHVDC-OPF problem incorporating RESs such as wind, solar, small-hydro, and tidal power. The available power of RESs is calculated by means of the Weibull, lognormal, and Gumbel probability density functions. The proposed MO-OPF optimizes the double and triple configurations of various objective functions, including total cost, the total cost with the valve-point effect, the total cost with emission and carbon tax, voltage deviation, and power loss. Multi-objective grasshopper optimization algorithm (MOGOA) is applied to find non-dominated Pareto-optimal solutions of the non-convex, nonlinear and high-dimensional MO/AC-MTHVDC-OPF problem. The obtained results are compared with the results of MSSA, MODA, MOALO, and MO_Ring_PSO_SCD algorithms. The comparison of results gives that MOGOA outperforms competitive optimizers with respect to the quality of Pareto-optimal solutions and their distribution.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- OPF:
-
Optimal power flow
- MTHVDC:
-
Multi-terminal high-voltage direct current
- AC:
-
Alternating current
- MO:
-
Multi-objective
- RESs:
-
Renewable energy sources
- MOGOA:
-
Multi-objective grasshopper optimization algorithm
- MSSA:
-
Multi-objective salp swarm algorithm
- MODA:
-
Multi-objective dragonfly algorithm
- MOALO:
-
Multi-objective ant lion optimizer
- MO_Ring_PSO_SCD:
-
Multi-objective particle swarm optimization using ring topology and special crowding distance
- IEEE:
-
The institute of electrical and electronics engineers
- VSC:
-
Voltage source converter
- HVDC:
-
High-voltage direct current
- PDFs:
-
Probability density functions
- MO/AC-MTHVDC-OPF:
-
Multi-objective alternating current multi-terminal high voltage direct current optimal power flow
- \({S}_{ab}\) :
-
MVA injected into the VSCs of the AC grid
- \({R}_{\mathrm{dc}}\) :
-
Resistance of DC line
- \({V}_{{c}_{b}}\) :
-
Magnitude of the controlled voltage source that is linked to AC buses
- \({V}_{{s}_{a}}\) :
-
Voltage magnitude of AC bus
- \({I}_{ab}\) :
-
Injected current into the VSCs of the AC grid
- \({N}_{\mathrm{AC}-b}\) :
-
Number of AC buses that is linked to VSC
- \({N}_{\mathrm{VSC}}\) :
-
Number of VSC
- \({Pc}_{b}+{jQc}_{b}\) :
-
Active and reactive powers at each VSC
- \({Ps}_{a}+{jQs}_{a}\) :
-
Active and reactive powers at AC side
- \({\delta }_{ab}\) :
-
Phase angle difference between VSC and the attached AC side
- \({P}_{{\text{TG}}_{1}}\) :
-
Active power output of slack generator
- \({V}_{\text{L}}\) :
-
Voltage magnitude of load bus
- \({Q}_{\mathrm{TG}}\) :
-
Reactive power of thermal generator
- \({Q}_{\mathrm{WS}}\) :
-
Reactive power of wind generator
- \({Q}_{\mathrm{PVSH}}\) :
-
Reactive power of combined solar PV/small-hydro system
- \({Q}_{\mathrm{WS}+\mathrm{TDL}}\) :
-
Reactive power of combined wind-tidal energy system
- \({S}_{L}\) :
-
Transmission line loading
- \(\mathrm{NTG}\) :
-
Number of thermal generators
- \(\mathrm{NPQ}\) :
-
Number of load buses
- \(\mathrm{NWS}\) :
-
Number of wind power units
- \(\mathrm{NPVSH}\) :
-
Number of combined solar PV/small-hydro power units
- \(\mathrm{NWSTDL}\) :
-
Number of combined wind-tidal power units
- \(\mathrm{NTL}\) :
-
Number of AC transmission lines
- \({P}_{\mathrm{TG}}\) :
-
Power output from thermal generator
- \({P}_{\mathrm{WS}}\) :
-
Power output from wind generator
- \({P}_{\mathrm{PVSH}}\) :
-
Power output from combined solar PV/small-hydro energy unit
- \({P}_{\mathrm{WS}+\mathrm{TDL}}\) :
-
Power output from combined wind-tidal energy unit
- \({V}_{\text{G}}\) :
-
Voltage magnitude of generator buses
- \(T\) :
-
Transformer tap setting ratio
- \(\mathrm{NG}\) :
-
Number of generator buses
- \(\mathrm{NT}\) :
-
Number of transformers
- \({V}_{{\mathrm{dc}}_{i}}\) :
-
Voltage magnitude of i-th bus on DC grid
- \({V}_{{c}_{i}}\) :
-
Voltage magnitude at the AC terminal of i-th VSC
- \({P}_{{s}_{i}}\) :
-
Active power output from i-th connected converter to the AC side
- \({Q}_{{s}_{i}}\) :
-
Reactive power output from i-th connected converter to the AC side
- \({CF}_{0}\) :
-
Generation cost (in $/h) of thermal generators
- \({m}_{i},{l}_{i}, {k}_{i}\) :
-
Cost coefficients of i-th thermal generator
- \(CF\) :
-
Generation cost (in $/h) of thermal generator with valve-point effect
- \({n}_{i}, {r}_{i}\) :
-
Valve-point effect coefficients for i-th thermal generator
- \({{P}_{TGi}}^{\mathrm{min}}\) :
-
Minimum active power output from i-th thermal generator
- \({E}_{\mathrm{total}}\) :
-
Total emission value
- \({C}_{\mathrm{tax}}\) :
-
Carbon tax value
- \({C}_{\mathrm{E}}\) :
-
Emission cost
- \({\mu }_{i}\), \({\varphi }_{i}\), \({\acute{\alpha}}_{i}\), \({\gamma }_{i}\), \({\grave{\varepsilon}}_{i}\) :
-
Emission coefficients for i-th thermal generator
- \({DC}_{\mathrm{W}}\) :
-
Direct cost for wind power
- \(\mathrm{wp}\) :
-
Direct cost coefficient of the wind power
- \({DC}_{\mathrm{PVSH}}\) :
-
Direct cost for combined solar PV/small-hydro power
- \({P}_{\mathrm{PVSH},s}\) :
-
Scheduled power of solar PV unit
- \({P}_{\mathrm{PVSH},sh}\) :
-
Scheduled power of small-hydro unit
- \(\mathrm{pv}\) :
-
Cost coefficient of the solar PV power
- \(\mathrm{sh}\) :
-
Cost coefficient of small-hydro power
- \({DC}_{\mathrm{WSTDL}}\) :
-
Direct cost for combined wind-tidal power
- \({P}_{\mathrm{TDLS}}\) :
-
Scheduled power of tidal energy
- \(tdl\) :
-
Cost coefficient for tidal power
- \({OC}_{\mathrm{W}}\) :
-
Over-estimation cost for wind power
- \({UC}_{\mathrm{W}}\) :
-
Under-estimation cost for wind power
- \({C}_{\mathrm{Ow}}\) :
-
Over-estimation cost coefficient for wind power
- \({C}_{\mathrm{Uw}}\) :
-
Under-estimation cost coefficient for wind power
- \({P}_{\mathrm{wav}}\) :
-
Available power from wind power plant
- \({P}_{\mathrm{wr}}\) :
-
Rated power of wind power plant
- \({OC}_{\mathrm{PVSH}}\) :
-
Over-estimation cost for combined solar PV/small-hydro power
- \({UC}_{\mathrm{PVSH}}\) :
-
Under-estimation cost for combined solar PV/small-hydro power
- \({C}_{\mathrm{Opvsh}}\) :
-
Over-estimation cost coefficient for combined solar PV/small-hydro power
- \({C}_{\mathrm{Upvsh}}\) :
-
Under-estimation cost coefficient for combined solar PV/small-hydro power
- \({P}_{\mathrm{PVSHav}}\) :
-
Available power from combined solar PV/small-hydro power plant
- \({OC}_{\mathrm{TDL}}\) :
-
Over-estimation cost for tidal power
- \({UC}_{\mathrm{TDL}}\) :
-
Under-estimation cost for tidal power
- \({C}_{\mathrm{Otdl}}\) :
-
Over-estimation cost coefficient for tidal power
- \({C}_{\mathrm{Utdl}}\) :
-
Under-estimation cost coefficient for tidal power
- \({P}_{\mathrm{TDLav}}\) :
-
Available power from tidal power plant
- \({F}_{\mathrm{obj}}\) :
-
Objective function
- \({N}_{\mathrm{DC}}\) :
-
Number of buses on DC side
- \({P}_{\mathrm{loss}\_\mathrm{AC}}\) :
-
AC grid active power loss
- \({P}_{\mathrm{loss}\_\mathrm{DC}}\) :
-
DC grid active power loss
- \({P}_{\mathrm{loss}\_\mathrm{VSC}}\) :
-
Active power loss at VSC
- \({\psi }_{1}\), \({\psi }_{2}\), \({\psi }_{3}\) :
-
Power loss coefficients related to each VSC
- \({I}_{c,i}\) :
-
The current of i-th VSC
- \({N}_{\mathrm{AC}}\) :
-
Number of AC bus
- \({P}_{Gi}\) :
-
Active power at generation bus i
- \({P}_{Di}\) :
-
Active power demand at generation bus i
- \({Q}_{Gi}\) :
-
Reactive power of the i-th generator
- \({Q}_{Di}\) :
-
Reactive power of the i-th load bus
- \({Q}_{ci}\) :
-
Reactive power compensation at bus i
- \({G}_{ij}\) :
-
Conductance between bus i and bus j
- \({B}_{ij}\) :
-
Susceptance between bus i and bus j
- \({\delta }_{i}\), \({\delta }_{j}\) :
-
Voltage angle of the i-th and j-th AC bus
- \({P}_{dc,i}\) :
-
Active power flow through a DC line (leaving DC bus i)
- \({G}_{dc,ij}\) :
-
Conductance of the DC line between bus i and bus j
- \({S}_{\mathrm{DC}}\) :
-
Transmission line loading of DC line
- \({d}_{i}^{\mathrm{min}}, {d}_{i}^{\mathrm{max}}\) :
-
Minimum and maximum limits of the circle diameter related to the i-th VSC P-Q capability
- \({P}_{0}, {Q}_{0}\) :
-
Circle center related to the i-th VSC P-Q capability
- \({N}_{f}\) :
-
Number of DC transmission line
- \({v}_{w}\) :
-
Wind speed (m/s)
- \(\acute{\omega}\) , \(\lambda\) :
-
Weibull PDF scale and shape factors
- \({f}_{v}\left({v}_{w}\right)\) :
-
Probability of wind speed
- \({v}_{\mathrm{in}}\), \({v}_{{\rm r}},\) \({v}_{\mathrm{out}}\) :
-
Cut-in, rated and cut-out wind speeds
- \({p}_{w}\) :
-
Output power from a wind turbine
- \({p}_{\mathrm{wr}}\) :
-
Rated output power of wind turbine
- \({f}_{w}\left({p}_{w}\right)\) :
-
Wind power probability
- \(\xi , { \vartheta }\) :
-
Lognormal PDF mean and standard deviation parameters
- \({G}_{\text{pv}}\) :
-
Solar irradiance
- \({f}_{{G}_{\mathrm{pv}}}\left({G}_{\mathrm{pv}}\right)\) :
-
Probability of solar irradiance
- \({P}_{\mathrm{pv}}\) :
-
Power output from solar PV unit
- \({R}_{\mathrm{C}}\) :
-
Certain irradiance
- \({Q}_{\mathrm{wsh}}\) :
-
River flow rate
- \({f}_{Q}\left({Q}_{\mathrm{wsh}}\right)\) :
-
Probability of river flow rate
- \(\ddot{\Upsilon}\), ψ:
-
Gumbel PDF scale and location parameters
- \({Q}_{\mathrm{TDL}}\) :
-
Discharge rate
- \({f}_{\mathrm{QTDL}}\left({Q}_{\mathrm{TDL}}\right)\) :
-
Probability of discharge rate
- \(\zeta\), :
-
Gumbel PDF parameters
- \(A\) :
-
Archive vector
- \(P\) :
-
Population
- \({O}_{\mathrm{A}}\) :
-
Objective function value of archive members
- \({O}_{\mathrm{P}}\) :
-
Objective function value of solution candidates in population
- \(\mathrm{PS}\) :
-
Pareto set
- \(\mathrm{PF}\) :
-
Pareto front
- MVAr:
-
Megavolt-ampere reactive
- MW:
-
Megawatt
- \({P}_{\mathrm{RES}}^{\mathrm{max}}\) :
-
Maximum active power output from renewable energy source
- maxFEs:
-
Maximum number of fitness function evaluations
- \({n}_{\mathrm{obj}}\) :
-
Number of objective functions
- p.u:
-
Per unit
- $/h:
-
Dollar per hour
References
Karthik N, Parvathy AK, Arul R, Padmanathan K (2021) Multi-objective optimal power flow using a new heuristic optimization algorithm with the incorporation of renewable energy sources. Int J Energy Environ Eng 12(4):641–678
Warid W (2020) Optimal power flow using the AMTPG-Jaya algorithm. Appl Soft Comput 91:106252
Birogul S (2019) Hybrid harris hawk optimization based on differential evolution (HHODE) algorithm for optimal power flow problem. IEEE Access 7:184468–184488
Duman S, Güvenç U, Sönmez Y, Yörükeren N (2012) Optimal power flow using gravitational search algorithm. Energy Convers Manage 59:86–95
Sinsuphan N, Leeton U, Kulworawanichpong T (2013) Optimal power flow solution using improved harmony search method. Appl Soft Comput 13(5):2364–2374
Bouchekara HREH, Abido MA, Boucherma MJEPSR (2014) Optimal power flow using teaching-learning-based optimization technique. Electric Power Syst Res 114:49–59
Kılıç U (2015) Backtracking search algorithm-based optimal power flow with valve point effect and prohibited zones. Electr Eng 97(2):101–110
Attia AF, El Sehiemy RA, Hasanien HM (2018) Optimal power flow solution in power systems using a novel sine-cosine algorithm. Int J Electr Power Energy Syst 99:331–343
El-Hana Bouchekara HR, Abido MA, Chaib AE (2016) Optimal power flow using an improved electromagnetism-like mechanism method. Electric Power Compon Syst 44(4):434–449
Guvenc U, Bakir H, Duman S, Ozkaya B (2020) Optimal power flow using manta ray foraging optimization. In: The international conference on artificial intelligence and applied mathematics in engineering, pp 136–149, Springer, Cham
Abd El-sattar S, Kamel S, Ebeed M, Jurado F (2021) An improved version of salp swarm algorithm for solving optimal power flow problem. Soft Comput 25(5):4027–4052
Shaheen AM, Elsayed AM, El-Sehiemy RA (2021) Optimal economic–environmental operation for AC-MTDC grids by improved crow search algorithm. IEEE Syst J 16(1):1270–1277
Li Z, He J, Xu Y, Wang X (2018) An optimal power flow algorithm for AC/DC hybrid power systems with VSC-based MTDC considering converter power losses and voltage-droop control strategy. IEEJ Trans Electr Electron Eng 13(12):1690–1698
Abdul-hamied DT, Shaheen AM, Salem WA, Gabr WI, El-sehiemy RA (2020) Equilibrium optimizer based multi dimensions operation of hybrid AC/DC grids. Alex Eng J 59(6):4787–4803
Elattar EE, Shaheen AM, Elsayed AM, El-Sehiemy RA (2020) Optimal power flow with emerged technologies of voltage source converter stations in meshed power systems. IEEE Access 8:166963–166979
Shaheen AM, El-Sehiemy RA, Elsayed AM, Elattar EE (2021) Multi-objective manta ray foraging algorithm for efficient operation of hybrid AC/DC power grids with emission minimisation. IET Gener Transm Distrib 15(8):1314–1336
Feng W, Tjernberg LB, Mannikoff A, Bergman A (2013) A new approach for benefit evaluation of multiterminal VSC–HVDC using a proposed mixed AC/DC optimal power flow. IEEE Trans Power Deliv 29(1):432–443
Hosseinzadeh M, Salmasi FR (2015) Robust optimal power management system for a hybrid AC/DC micro-grid. IEEE Trans Sustain Energy 6(3):675–687
Zhao Q, García-González J, Gomis-Bellmunt O, Prieto-Araujo E, Echavarren FM (2017) Impact of converter losses on the optimal power flow solution of hybrid networks based on VSC-MTDC. Electric Power Syst Res 151:395–403
Elsayed AM, Shaheen AM, Alharthi MM, Ghoneim SS, El-Sehiemy RA (2021) Adequate operation of hybrid AC/MT-HVDC power systems using an improved multi-objective marine predators optimizer. IEEE Access 9:51065–51087
Biswas PP, Suganthan PN, Amaratunga GA (2017) Optimal power flow solutions incorporating stochastic wind and solar power. Energy Convers Manage 148:1194–1207
Reddy SS (2017) Optimal power flow with renewable energy resources including storage. Electr Eng 99(2):685–695
Khan IU, Javaid N, Gamage KA, Taylor CJ, Baig S, Ma X (2020) Heuristic algorithm based optimal power flow model incorporating stochastic renewable energy sources. IEEE Access 8:148622–148643
Tang C, Liu M, Liu Q, Dong P (2020) A per-node granularity decentralized optimal power flow for radial distribution networks with PV and EV integration. Int J Electr Power Energy Syst 116:105513
Duman S, Li J, Wu L, Yorukeren N (2021) Symbiotic organisms search algorithm-based security-constrained AC–DC OPF regarding uncertainty of wind, PV and PEV systems. Soft Comput 25(14):9389–9426
Sulaiman MH, Mustaffa Z (2021) Solving optimal power flow problem with stochastic wind–solar–small hydro power using barnacles mating optimizer. Control Eng Pract 106:104672
Kaymaz E, Duman S, Guvenc U (2021) Optimal power flow solution with stochastic wind power using the Lévy coyote optimization algorithm. Neural Comput Appl 33(12):6775–6804
Khan IU, Javaid N, Taylor C J, Gamage KA, Xiandong MA (2020) Optimal power flow solution with uncertain RES using augmented grey wolf optimzation. In: 2020 IEEE international conference on power systems technology, pp 1–6, IEEE
Guvenc U, Duman S, Kahraman HT, Aras S, Katı M (2021) Fitness-Distance Balance based adaptive guided differential evolution algorithm for security-constrained optimal power flow problem incorporating renewable energy sources. Appl Soft Comput 108:107421
Pandya SB, Jariwala HR (2021) Equilibrium optimizer: Insights, balance, diversity for renewable energy resources based optimal power flow with multiple scenarios. Smart Sci 9(4):257–274
Duman S, Li J, Wu L, Guvenc U (2020) Optimal power flow with stochastic wind power and FACTS devices: a modified hybrid PSOGSA with chaotic maps approach. Neural Comput Appl 32(12):8463–8492
Dasgupta K, Roy PK, Mukherjee V (2020) Power flow based hydro-thermal-wind scheduling of hybrid power system using sine cosine algorithm. Electric Power Syst Res 178:106018
Pham LH, Dinh BH, Nguyen TT, Phan VD (2021) Optimal operation of wind-hydrothermal systems considering certainty and uncertainty of wind. Alex Eng J 60(6):5431–5461
Shaheen MA, Hasanien HM, Alkuhayli A (2021) A novel hybrid GWO-PSO optimization technique for optimal reactive power dispatch problem solution. Ain Shams Eng J 12(1):621–630
Abdollahi A, Ghadimi AA, Miveh MR, Mohammadi F, Jurado F (2020) Optimal power flow incorporating FACTS devices and stochastic wind power generation using krill herd algorithm. Electronics 9(6):1043
Elattar EE (2019) Optimal power flow of a power system incorporating stochastic wind power based on modified moth swarm algorithm. IEEE Access 7:89581–89593
Rambabu M, VenkataNagesh Kumar G, Venkateswara Rao B, Sravan Kumar B (2021) Optimal power flow solution of an integrated power system using elephant herd optimization algorithm incorporating stochastic wind and solar power. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, pp 1–21
Khamees AK, Abdelaziz AY, Eskaros MR, El-Shahat A, Attia MA (2021) Optimal power flow solution of wind-integrated power system using novel metaheuristic method. Energies 14(19):6117
Ullah Z, Wang S, Radosavljević J, Lai J (2019) A solution to the optimal power flow problem considering WT and PV generation. IEEE Access 7:46763–46772
Rizwan M, Hong L, Muhammad W, Azeem SW, Li Y (2021) Hybrid Harris Hawks optimizer for integration of renewable energy sources considering stochastic behavior of energy sources. Int Trans Electr Energy Syst 31(2):e12694
Mirjalili SZ, Mirjalili S, Saremi S, Faris H, Aljarah I (2018) Grasshopper optimization algorithm for multi-objective optimization problems. Appl Intell 48(4):805–820
Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191
Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073
Mirjalili S, Jangir P, Saremi S (2017) Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Appl Intell 46(1):79–95
Yue CT, Qu BY, Liang JJ (2018) A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems. IEEE Trans Evol Comput 22(5):805–817
Ghasemi M, Ghavidel S, Ghanbarian MM, Gharibzadeh M, Vahed AA (2014) Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm. Energy 78:276–289
Duman S, Akbel M, Kahraman HT (2021) Development of the multi-objective adaptive guided differential evolution and optimization of the MO-ACOPF for wind/PV/tidal energy sources. Appl Soft Comput 112:107814
Kahraman H T, Duman S (2022) Multi-objective adaptive guided differential evolution for multi-objective optimal power flow ıncorporating wind-solar-small hydro-tidal energy sources. In: Differential evolution: from theory to practice, pp 341–365, Springer, Singapore
Duman S, Li J, Wu L (2021) AC optimal power flow with thermal–wind–solar–tidal systems using the symbiotic organisms search algorithm. IET Renew Power Gener 15(2):278–296
Biswas PP, Suganthan PN, Qu BY, Amaratunga GA (2018) Multiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro power. Energy 150:1039–1057
Duman S, Kahraman HT, Guvenc U, Aras S (2021) Development of a Lévy flight and FDB-based coyote optimization algorithm for global optimization and real-world ACOPF problems. Soft Comput 25(8):6577–6617
Vidyasagar S, Vijayakumar K, Sattianadan D, Fernandez SG (2016) Optimal placement of DG based on voltage stability index and voltage deviation index. Indian J Sci Technol 9(38):1–9
Shaheen AM, Farrag SM, El-Sehiemy RA (2017) MOPF solution methodology. IET Gener Transm Distrib 11(2):570–581
Biswas PP, Suganthan PN, Mallipeddi R, Amaratunga GA (2018) Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques. Eng Appl Artif Intell 68:81–100
Renedo J, Ibrahim AA, Kazemtabrizi B, Garcia-Cerrada A, Rouco L, Zhao Q, Garcia-Gonzalez J (2019) A simplified algorithm to solve optimal power flows in hybrid VSC-based AC/DC systems. Int J Electr Power Energy Syst 110:781–794
Sayah S (2018) Modified differential evolution approach for practical optimal reactive power dispatch of hybrid AC–DC power systems. Appl Soft Comput 73:591–606
Roy R, Jadhav HT (2015) Optimal power flow solution of power system incorporating stochastic wind power using Gbest guided artificial bee colony algorithm. Int J Electr Power Energy Syst 64:562–578
Panda A, Tripathy M (2014) Optimal power flow solution of wind integrated power system using modified bacteria foraging algorithm. Int J Electr Power Energy Syst 54:306–314
Panda A, Tripathy M (2015) Security constrained optimal power flow solution of wind-thermal generation system using modified bacteria foraging algorithm. Energy 93:816–827
Shi L, Wang C, Yao L, Ni Y, Bazargan M (2011) Optimal power flow solution incorporating wind power. IEEE Syst J 6(2):233–241
Reddy SS, Bijwe PR, Abhyankar AR (2014) Real-time economic dispatch considering renewable power generation variability and uncertainty over scheduling period. IEEE Syst J 9(4):1440–1451
Chang TP (2010) Investigation on frequency distribution of global radiation using different probability density functions. Int J Appl Sci Eng 8(2):99–107
Mujere N (2011) Flood frequency analysis using the Gumbel distribution. Int J Comput Sci Eng 3(7):2774–2778
Cabus P (2008) River flow prediction through rainfall–runoff modelling with a probability-distributed model (PDM) in Flanders, Belgium. Agric Water Manage 95(7):859–868
Özkış A, Babalık A (2017) A novel metaheuristic for multi-objective optimization problems: the multi-objective vortex search algorithm. Inf Sci 402:124–148
Babalik A, Ozkis A, Uymaz SA, Kiran MS (2018) A multi-objective artificial algae algorithm. Appl Soft Comput 68:377–395
Akbel M, Kahraman H (2020) Çok Amaçlı Meta-Sezgisel Optimizasyon Algoritmalarının Performanslarının Karşılaştırılması. Mühendislik Bilimleri ve Tasarım Dergisi 8(5):185–199
Dhiman G, Singh KK, Slowik A, Chang V, Yildiz AR, Kaur A, Garg M (2021) EMoSOA: a new evolutionary multi-objective seagull optimization algorithm for global optimization. Int J Mach Learn Cybern 12(2):571–596
Deb K (2011) Multi-objective optimisation using evolutionary algorithms: an introduction. In: Multi-objective evolutionary optimisation for product design and manufacturing, pp 3–34. Springer, London
Coello C A C, Lamont G B, Van Veldhuizen DA (2007). Evolutionary algorithms for solving multi-objective problems, vol. 5, pp 79-104, Springer, New York
Karakoyun M, Ozkis A, Kodaz H (2020) A new algorithm based on gray wolf optimizer and shuffled frog leaping algorithm to solve the multi-objective optimization problems. Appl Soft Comput 96:106560
Mirjalili S, Saremi S, Mirjalili SM, Coelho LDS (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47:106–119
Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimization algorithm: theory and application. Adv Eng Softw 105:30–47
Arora S, Anand P (2019) Chaotic grasshopper optimization algorithm for global optimization. Neural Comput Appl 31(8):4385–4405
Aras S, Gedikli E, Kahraman HT (2021) A novel stochastic fractal search algorithm with fitness-distance balance for global numerical optimization. Swarm Evol Comput 61:100821
Kahraman HT, Bakir H, Duman S, Katı M, Aras S, Guvenc U (2022) Dynamic FDB selection method and its application: modeling and optimizing of directional overcurrent relays coordination. Appl Intell 52(5):4873–4908
Kahraman HT, Aras S, Gedikli E (2020) Fitness-distance balance (FDB): a new selection method for meta-heuristic search algorithms. Knowl-Based Syst 190:105169
IEEE 30-bus test system data http://labs.ece.uw.edu/pstca/pf30/pg_tca30bus.htm
Chaib AE, Bouchekara HREH, Mehasni R, Abido MA (2016) Optimal power flow with emission and non-smooth cost functions using backtracking search optimization algorithm. Int J Electr Power Energy Syst 81:64–77
Beerten J, Belmans R (2015) MatACDC-an open source software tool for steady-state analysis and operation of HVDC grids
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bakir, H., Guvenc, U. & Kahraman, H.T. Optimal operation and planning of hybrid AC/DC power systems using multi-objective grasshopper optimization algorithm. Neural Comput & Applic 34, 22531–22563 (2022). https://doi.org/10.1007/s00521-022-07670-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-022-07670-y