Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Sorting Networks of Logarithmic Depth, Further Simplified

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We further simplify Paterson’s version of the Ajtai–Komlós–Szemerédi sorting network, and its analysis, mainly by tuning the invariant to be maintained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ajtai, M., Komlós, J., Szemerédi, E.: Sorting in clog n parallel steps. Combinatorica 3(1), 1–19 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ajtai, M., Komlós, J., Szemerédi, E.: An \(\mathcal{O}(n\log n)\) sorting network. In: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, pp. 1–9. Association for Computing Machinery (1983)

  3. Ajtai, M., Komlós, J., Szemerédi, E.: Halvers and expanders. In: Proceedings, 33rd Annual Symposium on Foundations of Computer Science, pp. 686–692. IEEE Computer Society Press (1992)

  4. Akl, S.G.: Parallel Computation: Models and Methods. Prentice-Hall, Englewood Cliffs (1997)

    Google Scholar 

  5. Alekseev, V.E.: Sorting algorithms with minimum memory. Kibernetika 5(5), 99–103 (September–October, 1969)

    Google Scholar 

  6. Batcher, K.E.: Sorting networks and their applications. In: Spring Joint Computer Conference. AFIPS Conference Proceedings, vol. 32, pp. 307–314. Thompson Book Company (1968)

  7. Chvátal, V.: Lecture notes on the new AKS sorting network. DCS-TR-294, Computer Science Department, Rutgers University (October, 1992)

  8. Cole, R., Ó’Dúnlaing, C.: Note on the AKS sorting network (expository note). Technical Report # 243, Computer Science Department, New York University (1986)

  9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  10. Gibbons, A., Rytter, W.: Efficient Parallel Algorithms. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  11. Knuth, D.E.: The Art of Computer Programming, vol. 3: Sorting and Searching, 2nd edn. Addison-Wesley, Reading (1998)

    Google Scholar 

  12. Manos, H.: Construction of halvers. Inf. Process. Lett. 69(6), 303–307 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Parberry, I.: Parallel Complexity Theory. Pitman, London (1987)

    MATH  Google Scholar 

  14. Paterson, M.S.: Improved sorting networks with \(\mathcal{O}(\log N)\) depth. Algorithmica 5(1), 75–92 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Pippenger, N.: Communication networks. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity, pp. 805–833. Elsevier/MIT Press (1990), Chapter 15

  16. Smith, J.R.: The Design and Analysis of Parallel Algorithms. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Seiferas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seiferas, J. Sorting Networks of Logarithmic Depth, Further Simplified. Algorithmica 53, 374–384 (2009). https://doi.org/10.1007/s00453-007-9025-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-007-9025-6

Keywords

Navigation