Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Flexible Placements of Periodic Graphs in the Plane

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Given a periodic graph, we wish to determine via combinatorial methods whether it has periodic embeddings in the plane that—via motions that preserve edge-lengths and periodicity—can be continuously deformed into another non-congruent embedding of the graph. By introducing NBAC-colourings for the corresponding quotient gain graphs, we identify which periodic graphs have flexible embeddings in the plane when the lattice of periodicity is fixed. We further characterise with NBAC-colourings which 1-periodic graphs have flexible embeddings in the plane with a flexible lattice of periodicity, and characterise in special cases which 2-periodic graphs have flexible embeddings in the plane with a flexible lattice of periodicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. Although (Gp) is the standard notation for a framework, we shall instead reserve this for the quotient frameworks that we use throughout the majority of this paper.

References

  1. Badri, G., Kitson, D., Power, S.C.: The almost periodic rigidity of crystallographic bar-joint frameworks. Symmetry 6(2), 308–328 (2014)

    Article  MathSciNet  Google Scholar 

  2. Borcea, C.S., Streinu, I.: Periodic frameworks and flexibility. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 466(2121), 2633–2649 (2010)

  3. Borcea, C.S., Streinu, I.: Minimally rigid periodic graphs. Bull. Lond. Math. Soc. 43(6), 1093–1103 (2011)

    Article  MathSciNet  Google Scholar 

  4. Borcea, C., Streinu, I.: Geometric auxetics. Proc. A. 471(2184), # 20150033 (2015)

  5. Dewar, S., Grasegger, G., Legerský, J.: Flexible placements of graphs with rotational symmetry (2020). arXiv:2003.09328

  6. Gallet, M., Grasegger, G., Legerský, J., Schicho, J.: On the existence of paradoxical motions of generically rigid graphs on the sphere. SIAM J. Discrete Math. 35(1), 325–361 (2021)

    Article  MathSciNet  Google Scholar 

  7. Grasegger, G., Legerský, J., Schicho, J.: Graphs with flexible labelings. Discrete Comput. Geom. 62(2), 461–480 (2019)

    Article  MathSciNet  Google Scholar 

  8. Grasegger, G., Legerský, J., Schicho, J.: Graphs with flexible labelings allowing injective realizations. Discrete Math. 343(6), # 111713 (2020)

  9. Gross, J.L., Tucker, T.W.: Topological Graph Theory. Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley, New York (1987)

    MATH  Google Scholar 

  10. Kastis, E., Power, S.C.: Algebraic spectral synthesis and crystal rigidity. J. Pure Appl. Algebra 223(11), 4954–4965 (2019)

    Article  MathSciNet  Google Scholar 

  11. Kaszanitzky, V.E., Schulze, B., Tanigawa, S.: Global rigidity of periodic graphs under fixed-lattice representations. J. Comb. Theory Ser. B 146, 176–218 (2021)

    Article  MathSciNet  Google Scholar 

  12. Laman, G.: On graphs and rigidity of plane skeletal structures. J. Engrg. Math. 4(4), 331–340 (1970)

    Article  MathSciNet  Google Scholar 

  13. Malestein, J., Theran, L.: Generic combinatorial rigidity of periodic frameworks. Adv. Math. 233, 291–331 (2013)

    Article  MathSciNet  Google Scholar 

  14. Malestein, J., Theran, L.: Ultrarigid periodic frameworks (2015). arXiv:1404.2319v4

  15. Mumford, D.: Abelian Varieties. Tata Institute of Fundamental Research Studies in Mathematics, vol. 5. Oxford University Press, London (1970)

  16. Nixon, A., Ross, E.: Periodic rigidity on a variable torus using inductive constructions. Electron. J. Comb. 22(1), # P1.1 (2015)

  17. Owen, J.C., Power, S.C.: Infinite bar-joint frameworks, crystals and operator theory. New York J. Math. 17, 445–490 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Pollaczek-Geiringer, H.: Über die Gliederung ebener Fachwerke. Z. Angew. Math. Mech. 7(1), 58–72 (1927)

    Article  Google Scholar 

  19. Power, S.C.: Polynomials for crystal frameworks and the rigid unit mode spectrum. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372(2008), # 20120030 (2014)

  20. Ross, E.: The rigidity of periodic frameworks as graphs on a fixed torus. Contrib. Discrete Math. 9(1), 11–45 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Ross, E.: Inductive constructions for frameworks on a two-dimensional fixed torus. Discrete Comput. Geom. 54(1), 78–109 (2015)

    Article  MathSciNet  Google Scholar 

  22. Stichtenoth, H.: Algebraic Function Fields and Codes. Graduate Texts in Mathematics, vol. 254. Springer, Berlin (2009)

  23. Whiteley, W.: Fragmentary and incidental behaviour of columns, slabs, and crystals. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372(2008), # 20120032 (2014)

Download references

Acknowledgements

I would like to thank the anonymous referees for their valuable corrections and comments, all of which helped greatly to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Dewar.

Additional information

Editor in Charge: Kenneth Clarkson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the Austrian Science Fund (FWF): P31888.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dewar, S. Flexible Placements of Periodic Graphs in the Plane. Discrete Comput Geom 66, 1286–1329 (2021). https://doi.org/10.1007/s00454-021-00328-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-021-00328-x

Keywords

Mathematics Subject Classification

Navigation