Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Refined Descendant Invariants of Toric Surfaces

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We construct refined tropical enumerative genus zero invariants of toric surfaces that specialize to the tropical descendant genus zero invariants introduced by Markwig and Rau when the quantum parameter tends to 1. In the case of trivalent tropical curves our invariants turn to be the Göttsche–Schroeter refined broccoli invariants. We show that this is the only possible refinement of the Markwig–Rau descendant invariants that generalizes the Göttsche–Schroeter refined broccoli invariants. We discuss also the computational aspect (a lattice path algorithm) and exhibit some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Here “rational” means “with rational slopes”.

  2. Here and further on, under the germ we understand a sufficiently small Euclidean neighborhood of the central element.

References

  1. Block, F., Gathmann, A., Markwig, H.: Psi-floor diagrams and a Caporaso–Harris type recursion. Isr. J. Math. 191(1), 405–449 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Block, F., Göttsche, L.: Refined curve counting with tropical geometry. Compos. Math. 152(1), 115–151 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gathmann, A., Kerber, M., Markwig, H.: Tropical fans and the moduli spaces of tropical curves. Compos. Math. 145(1), 173–195 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gathmann, A., Markwig, H.: The numbers of tropical plane curves through points in general position. J. Reine Angew. Math. 602, 155–177 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Gathmann, A., Markwig, H.: Kontsevich’s formula and the WDVV equations in tropical geometry. Adv. Math. 217(2), 537–560 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gathmann, A., Markwig, H., Schroeter, F.: Broccoli curves and the tropical invariance of Welschinger numbers. Adv. Math. 240, 520–574 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Göttsche, L., Schroeter, F.: Refined broccoli invariants (2016). arXiv:1606.09631

  8. Itenberg, I., Kharlamov, V., Shustin, E.: A Caporaso–Harris type formula for Welschinger invariants of real toric Del Pezzo surfaces. Comment. Math. Helv. 84(1), 87–126 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Itenberg, I., Mikhalkin, G.: On Block–Göttsche multiplicities for planar tropical curves. Int. Math. Res. Not. IMRN 2013(23), 5289–5320 (2013)

    Article  MATH  Google Scholar 

  10. Kerber, M., Markwig, H.: Intersecting Psi-classes on tropical \(M_{0, n}\). Int. Math. Res. Not. IMRN 2009(2), 221–240 (2009)

    Article  MATH  Google Scholar 

  11. Mandel, T.: Refined tropical curve counts and canonical bases for quantum cluster algebras (2015). arXiv:1503.06183

  12. Markwig, H., Rau, J.: Tropical descendant Gromov–Witten invariants. Manuscr. math. 129(3), 293–335 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mikhalkin, G.: Decomposition into pairs-of-pants for complex algebraic hypersurfaces. Topology 43(5), 1035–1065 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mikhalkin, G.: Enumerative tropical algebraic geometry in \({\mathbb{R}}^2\). J. Am. Math. Soc. 18(2), 313–377 (2005)

    Article  MATH  Google Scholar 

  15. Mikhalkin, G.: Tropical geometry and its applications. In: Sanz-Solé, M. et al. (eds.) Proceedings of the ICM, Madrid, Spain, 22–30 August 2006. Volume II: Invited Lectures, pp. 827–852. European Mathematical Society, Zürich (2006)

  16. Mikhalkin, G.: Quantum indices and refined enumeration of real plane curves. Acta Math. 219(1), 135–180 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nishinou, T., Siebert, B.: Toric degenerations of toric varieties and tropical curves. Duke Math. J. 135(1), 1–51 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schroeter, F., Shustin, E.: Refined elliptic tropical invariants. Isr. J. Math. 225(2), 817–869 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors have been supported by the German–Israeli Foundation Grant No. 1174-197.6/2011 and by the Israel Science Foundation Grants Nos. 176/15 and 501/18, as well as by the Bauer–Neuman Chair in Real and Complex Geometry. This work has been started during the stay of the second author at the Max-Planck Institut für Mathematik, Bonn, in August–September 2015, and then completed during the stay of the second author in the Institute Mittag-Leffler, Stockholm, and École Normale Supérieure, Paris, in 2018. The second author is very grateful to MPIM, IML, and ENS for hospitality and excellent working conditions. We also would like to thank Franziska Schroeter for several important remarks and Travis Mandel for attracting our attention to the work [11]. Special thanks are due to the unknown referee for a careful reading of the paper and making many important critical remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenii Shustin.

Additional information

Editor in Charge: János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blechman, L., Shustin, E. Refined Descendant Invariants of Toric Surfaces. Discrete Comput Geom 62, 180–208 (2019). https://doi.org/10.1007/s00454-019-00093-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-019-00093-y

Keywords

Mathematics Subject Classification

Navigation