Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On Euclidean Distances and Sphere Representations

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

We extend recent results of Abdo Alfakih, who constructed Colin de Verdière matrices for complements of penny graphs from Euclidean distance matrices, by interpreting them using the sphere representations of Kotlov, Lovász, and Vempala. Our results apply to complements of contact graphs of unit spheres in arbitrary dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alfakih, Abdo, Y.: On the Colin de Verdière graph number and penny graphs. arXiv:2006.05197

  2. de Verdière, C.: Yves, Sur un nouvel invariant des graphes et un critère de planarité, (French). J. Combin. Theory Ser. B 50(1), 11–21 (1990). https://doi.org/10.1016/0095-8956(90)90093-F

    Article  MathSciNet  MATH  Google Scholar 

  3. Diestel, R.: Graph theory, 5th ed., Graduate Texts in Mathematics, vol. 173, Springer, Berlin. (2017). https://doi.org/10.1007/978-3-662-53622-3

  4. Gower, J.C.: Euclidean distance geometry. Math. Sci. 7(1), 1–14 (1982)

    MathSciNet  MATH  Google Scholar 

  5. Gower, J.C.: Properties of Euclidean and non-Euclidean distance matrices. Linear Algebra Appl. 67, 81–97 (1985). https://doi.org/10.1016/0024-3795(85)90187-9

    Article  MathSciNet  MATH  Google Scholar 

  6. Hogben, L.: Nordhaus-Gaddum problems for Colin de Verdière type parameters, variants of tree-width, and related parameters, Recent trends in combinatorics, IMA Vol. Math. Appl., 159, Springer, [Cham], 275–294 (2016). https://doi.org/10.1007/978-3-319-24298-9_12

  7. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  8. Kotlov, A., László, L., Vempala, S.: The Colin de Verdière number and sphere representations of a graph. Combinatorica 17(4), 483–521 (1997). https://doi.org/10.1007/BF01195002

    Article  MathSciNet  MATH  Google Scholar 

  9. László, L.: Graphs and geometry, American Mathematical Society Colloquium Publications, 65, American Mathematical Society, Providence, RI, (2019), https://doi.org/10.1090/coll/065

  10. Lovász, L., Schrijver, A.: A Borsuk theorem for antipodal links and a spectral characterization of linklessly embeddable graphs. Proc. Am. Math. Soc. 126(5), 1275–1285 (1998). https://doi.org/10.1090/S0002-9939-98-04244-0

    Article  MathSciNet  MATH  Google Scholar 

  11. Neumaier, A.: Distance matrices, dimension, and conference graphs. Nederl. Akad. Wetensch. Indag. Math. 43(4), 385–391 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Read, R. C., Wilson, R. J.: An Atlas of Graphs, Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1998)

  13. Robertson, N., Seymour, P. D., Thomas, R.: A survey of linkless embeddings, Graph structure theory (Seattle, WA, 1991). Contemp. Math., vol. 147, Amer. Math. Soc., Providence, RI, pp. 125–136 (1993). https://doi.org/10.1090/conm/147/01167

  14. Schoenberg, I. J.: Remarks to Maurice Fréchet’s article “Sur la définition axiomatique d’une classe d’espace distanciés vectoriellement applicable sur l’espace de Hilbert” [MR1503246]. Ann. Math. (2), 36(3), 724–732 (1935). https://doi.org/10.2307/1968654

Download references

Acknowledgements

The author wishes to thank the two anonymous referees for many helpful comments and suggestions.

Funding

This work was supported by a University of South Florida Nexus Initiative Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lon Mitchell.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitchell, L. On Euclidean Distances and Sphere Representations. Graphs and Combinatorics 39, 36 (2023). https://doi.org/10.1007/s00373-023-02636-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00373-023-02636-w

Keywords

Mathematics Subject Classification

Navigation