Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Circuits in Suborbital Graphs for The Normalizer

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

In this paper, we investigate suborbital graph for the normalizer of \(\varGamma _0(N)\) in \(PSL(2,\mathbb {R})\), where N will be of the form \(2^23p^2\), p is prime number greater than 3 and \(p\equiv 1\pmod {3}\) . Then we give edge and circuit conditions on graphs arising from the imprimitive action of the normalizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Akbaş, M., Singerman, D.: The normalizer of \(\Gamma _{0}(N)\) in PSL(2,\(\mathbb{R}\)). Glasgow Math. 32, 317–327 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akbaş, M., Singerman, D.: The signature of the normalizer of \(\Gamma _{0}(N)\). London Math. Soc. Lect. Note Ser. 165, 77–86 (1992)

    MathSciNet  MATH  Google Scholar 

  3. Akbaş, M., Başkan, T.: Suborbital graphs for the normalizer of \(\Gamma _{0}(N)\). Turk. J. Math. 20, 379–387 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Bigg, N.L., White, A.T.: Permutation Groups and Combinatorial Structures, London Mathematical Society Lecture Note Series, 33rd edn. CUP, Cambridge (1979)

    Book  Google Scholar 

  5. Conway, J.H., Norton, S.P.: Monstrous moonshine. Bull. Lond. Math. Soc. 11, 308–339 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Güler, B.Ö., Beşenk, M., Değer, A.H., Kader, S.: Elliptic elements and circuits in suborbital graphs. Hacet. J. Math. Stat. 40(2), 203–210 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Güler, B.Ö., Kör, T., Şanlı, Z.: Solutions to some congruence equations via suborbital graphs. SpringerPlus 5, 1327 (2016)

    Article  Google Scholar 

  8. Kader, S., Güler, B.Ö., Değer, A.H.: Suborbital graphs for a special subgroup of the normalizer of \({\Gamma }_0(m)\). Iran. J. Sci. Technol. A 34, 305–312 (2010)

    MathSciNet  Google Scholar 

  9. Keskin, R.: Suborbital graphs for the normalizer of \(\Gamma _{0}(m)\). Eur. J. Comb. 27(2), 193–206 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Keskin, R., Demirtürk, B.: On suborbital graphs for the normalizer of \(\Gamma _{0}(N)\). Electron. J. Comb. 16, 116 (2009). (18)

    MathSciNet  MATH  Google Scholar 

  11. Lehner, J., Newman, M.: Weierstrass points of \(\Gamma _0(N)\). Ann. Math. 79(2), 360–368 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sims, C.C.: Graphs and finite permutation groups. Math. Z 95, 76–86 (1967)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serkan Kader.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kader, S. Circuits in Suborbital Graphs for The Normalizer. Graphs and Combinatorics 33, 1531–1542 (2017). https://doi.org/10.1007/s00373-017-1852-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-017-1852-x

Keywords

Mathematics Subject Classification

Navigation