Abstract
In this paper, we investigate suborbital graph for the normalizer of \(\varGamma _0(N)\) in \(PSL(2,\mathbb {R})\), where N will be of the form \(2^23p^2\), p is prime number greater than 3 and \(p\equiv 1\pmod {3}\) . Then we give edge and circuit conditions on graphs arising from the imprimitive action of the normalizer.
Similar content being viewed by others
References
Akbaş, M., Singerman, D.: The normalizer of \(\Gamma _{0}(N)\) in PSL(2,\(\mathbb{R}\)). Glasgow Math. 32, 317–327 (1990)
Akbaş, M., Singerman, D.: The signature of the normalizer of \(\Gamma _{0}(N)\). London Math. Soc. Lect. Note Ser. 165, 77–86 (1992)
Akbaş, M., Başkan, T.: Suborbital graphs for the normalizer of \(\Gamma _{0}(N)\). Turk. J. Math. 20, 379–387 (1996)
Bigg, N.L., White, A.T.: Permutation Groups and Combinatorial Structures, London Mathematical Society Lecture Note Series, 33rd edn. CUP, Cambridge (1979)
Conway, J.H., Norton, S.P.: Monstrous moonshine. Bull. Lond. Math. Soc. 11, 308–339 (1979)
Güler, B.Ö., Beşenk, M., Değer, A.H., Kader, S.: Elliptic elements and circuits in suborbital graphs. Hacet. J. Math. Stat. 40(2), 203–210 (2011)
Güler, B.Ö., Kör, T., Şanlı, Z.: Solutions to some congruence equations via suborbital graphs. SpringerPlus 5, 1327 (2016)
Kader, S., Güler, B.Ö., Değer, A.H.: Suborbital graphs for a special subgroup of the normalizer of \({\Gamma }_0(m)\). Iran. J. Sci. Technol. A 34, 305–312 (2010)
Keskin, R.: Suborbital graphs for the normalizer of \(\Gamma _{0}(m)\). Eur. J. Comb. 27(2), 193–206 (2006)
Keskin, R., Demirtürk, B.: On suborbital graphs for the normalizer of \(\Gamma _{0}(N)\). Electron. J. Comb. 16, 116 (2009). (18)
Lehner, J., Newman, M.: Weierstrass points of \(\Gamma _0(N)\). Ann. Math. 79(2), 360–368 (1964)
Sims, C.C.: Graphs and finite permutation groups. Math. Z 95, 76–86 (1967)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kader, S. Circuits in Suborbital Graphs for The Normalizer. Graphs and Combinatorics 33, 1531–1542 (2017). https://doi.org/10.1007/s00373-017-1852-x
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00373-017-1852-x