Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Filtering noise in progressive stochastic ray tracing

Four optimizations to improve speed and robustness

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present an improved version of a state-of-the-art noise reduction technique for progressive stochastic rendering. Our additions make the method significantly faster at the cost of an acceptable loss in quality. Additionally, we improve the robustness of the method in the presence of difficult features like glossy reflection, caustics, and antialiased edges. We show with visual and numerical comparisons that our extensions improve the overall performance of the original approach and make it more broadly applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Adams, A., Gelfand, N., Dolson, J., Levoy, M.: Gaussian kd-trees for fast high-dimensional filtering. ACM Trans. Graph. 28, 21 (2009)

    Article  Google Scholar 

  2. Bauszat, P., Eisemann, M., Magnor, M.: Guided image filtering for interactive high-quality global illumination. Comput. Graph. Forum 30(4), 1361–1368 (2011)

    Article  Google Scholar 

  3. Chen, J., Paris, S., Durand, F.: Real-time edge-aware image processing with the bilateral grid. ACM Trans. Graph. 26(3), Article No. 103 (2007)

    Article  Google Scholar 

  4. Chen, Y.-C., Lei, S.I.E., Chang, C.-F.: Spatio-temporal filtering of indirect lighting for interactive global illumination. Comput. Graph. Forum 31(1), 189–201 (2012)

    Article  Google Scholar 

  5. Dammertz, H., Sewtz, D., Hanika, J., Lensch, H.P.A.: Edge-avoiding a-trous wavelet transform for fast global illumination filtering. In: HPG’10 Proceedings, pp. 67–75. EG Association, Aire-la-Ville (2010)

    Google Scholar 

  6. Gastal, E.S.L., Oliveira, M.M.: Domain transform for edge-aware image and video processing. ACM Trans. Graph. 30, 69 (2011)

    Article  Google Scholar 

  7. He, K., Sun, J., Tang, X.: Guided image filtering. In: ECCV’10 Proceedings, pp. 1–14. Springer, Berlin (2010)

    Google Scholar 

  8. Pajot, A., Barthe, L., Paulin, M.: Sample-space bright spots removal using density estimation. In: GI’11 Proceedings, pp. 159–166. Canadian HCCS (2011). School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada

  9. Pham, T.Q., van Vliet, L.J.: Separable bilateral filtering for fast video preprocessing. In: IEEE Intern. Conf. on Multimedia & Expo, pp. 1–4. IEEE Press, New York (2005)

    Google Scholar 

  10. Rousselle, F., Knaus, C., Zwicker, M.: Adaptive sampling and reconstruction using greedy error minimization. ACM Trans. Graph. 159, 1 (2011)

    Article  Google Scholar 

  11. Rushmeier, H.E., Ward, G.J.: Energy preserving non-linear filters. In: SIGGRAPH’94 Proceedings, pp. 131–138. ACM, New York (1994)

    Google Scholar 

  12. Schwenk, K., Kuijper, A., Behr, J., Fellner, D.W.: Practical noise reduction for progressive stochastic ray tracing with perceptual control. IEEE Comput. Graph. Appl. (2012). doi:10.1109/MCG.2012.30

  13. Suykens, F., Willems, Y.D.: Adaptive filtering for progressive Monte Carlo image rendering. In: WSCG’00 Proceedings (2000)

    Google Scholar 

  14. Yang, L., Sander, P.V., Lawrence, J., Hoppe, H.: Antialiasing recovery. ACM Trans. Graph. 30, 22 (2011)

    Google Scholar 

  15. Yang, Q., Tan, K.-H., Ahuja, N.: Real-time o(1) bilateral filtering. In: CVPR’09 Proceedings, pp. 557–564. IEEE Comput. Soc., Los Alamitos (2009)

    Google Scholar 

Download references

Acknowledgements

Assets used in this paper are courtesy of Stanford 3D Scanning Repository (Buddha) and Crytek GmbH/Marko Dabrovic (Sponza).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Schwenk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwenk, K., Behr, J. & Fellner, D.W. Filtering noise in progressive stochastic ray tracing. Vis Comput 29, 359–368 (2013). https://doi.org/10.1007/s00371-012-0738-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-012-0738-4

Keywords

Navigation