Abstract
We present an improved version of a state-of-the-art noise reduction technique for progressive stochastic rendering. Our additions make the method significantly faster at the cost of an acceptable loss in quality. Additionally, we improve the robustness of the method in the presence of difficult features like glossy reflection, caustics, and antialiased edges. We show with visual and numerical comparisons that our extensions improve the overall performance of the original approach and make it more broadly applicable.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Adams, A., Gelfand, N., Dolson, J., Levoy, M.: Gaussian kd-trees for fast high-dimensional filtering. ACM Trans. Graph. 28, 21 (2009)
Bauszat, P., Eisemann, M., Magnor, M.: Guided image filtering for interactive high-quality global illumination. Comput. Graph. Forum 30(4), 1361–1368 (2011)
Chen, J., Paris, S., Durand, F.: Real-time edge-aware image processing with the bilateral grid. ACM Trans. Graph. 26(3), Article No. 103 (2007)
Chen, Y.-C., Lei, S.I.E., Chang, C.-F.: Spatio-temporal filtering of indirect lighting for interactive global illumination. Comput. Graph. Forum 31(1), 189–201 (2012)
Dammertz, H., Sewtz, D., Hanika, J., Lensch, H.P.A.: Edge-avoiding a-trous wavelet transform for fast global illumination filtering. In: HPG’10 Proceedings, pp. 67–75. EG Association, Aire-la-Ville (2010)
Gastal, E.S.L., Oliveira, M.M.: Domain transform for edge-aware image and video processing. ACM Trans. Graph. 30, 69 (2011)
He, K., Sun, J., Tang, X.: Guided image filtering. In: ECCV’10 Proceedings, pp. 1–14. Springer, Berlin (2010)
Pajot, A., Barthe, L., Paulin, M.: Sample-space bright spots removal using density estimation. In: GI’11 Proceedings, pp. 159–166. Canadian HCCS (2011). School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
Pham, T.Q., van Vliet, L.J.: Separable bilateral filtering for fast video preprocessing. In: IEEE Intern. Conf. on Multimedia & Expo, pp. 1–4. IEEE Press, New York (2005)
Rousselle, F., Knaus, C., Zwicker, M.: Adaptive sampling and reconstruction using greedy error minimization. ACM Trans. Graph. 159, 1 (2011)
Rushmeier, H.E., Ward, G.J.: Energy preserving non-linear filters. In: SIGGRAPH’94 Proceedings, pp. 131–138. ACM, New York (1994)
Schwenk, K., Kuijper, A., Behr, J., Fellner, D.W.: Practical noise reduction for progressive stochastic ray tracing with perceptual control. IEEE Comput. Graph. Appl. (2012). doi:10.1109/MCG.2012.30
Suykens, F., Willems, Y.D.: Adaptive filtering for progressive Monte Carlo image rendering. In: WSCG’00 Proceedings (2000)
Yang, L., Sander, P.V., Lawrence, J., Hoppe, H.: Antialiasing recovery. ACM Trans. Graph. 30, 22 (2011)
Yang, Q., Tan, K.-H., Ahuja, N.: Real-time o(1) bilateral filtering. In: CVPR’09 Proceedings, pp. 557–564. IEEE Comput. Soc., Los Alamitos (2009)
Acknowledgements
Assets used in this paper are courtesy of Stanford 3D Scanning Repository (Buddha) and Crytek GmbH/Marko Dabrovic (Sponza).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Schwenk, K., Behr, J. & Fellner, D.W. Filtering noise in progressive stochastic ray tracing. Vis Comput 29, 359–368 (2013). https://doi.org/10.1007/s00371-012-0738-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-012-0738-4