Abstract
Soil-based water filtering devices can be described by models of viscous flow in porous media coupled with an advection–diffusion–reaction system modelling the transport of distinct contaminant species within water, and being susceptible to adsorption in the medium that represents soil. Such models are analysed mathematically, and suitable numerical methods for their approximate solution are designed. The governing equations are the Navier–Stokes–Brinkman equations for the flow of the fluid through a porous medium coupled with a convection-diffusion equation for the transport of the contaminants plus a system of ordinary differential equations accounting for the degradation of the adsorption properties of each contaminant. These equations are written in meridional axisymmetric form and the corresponding weak formulation adopts a mixed-primal structure. A second-order, (axisymmetric) divergence-conforming discretisation of this problem is introduced and the solvability, stability, and spatio-temporal convergence of the numerical method are analysed. Some numerical examples illustrate the main features of the problem and the properties of the numerical scheme.
Similar content being viewed by others
References
Agroum, R., Bernardi, C., Satouri, J.: Spectral discretization of the time-dependent Navier–Stokes problem coupled with the heat equation. Appl. Math. Comput. 268, 59–82 (2015)
Aldbaissy, R., Hecht, F., Mansour, G., Sayah, T.: A full discretisation of the time-dependent Boussinesq (buoyancy) model with nonlinear viscosity. Calcolo 55(44), 1–29 (2018)
Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, A., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS project version 1.5. Arch. Numer. Softw. 3(100), 9–23 (2015)
Amara, M., Capatina-Papaghiuc, D., Denel, B., Terpolilli, P.: Mixed finite element approximation for a coupled petroleum reservoir model. ESAIM Math. Model. Numer. Anal. 39, 349–376 (2005)
Anaya, V., Mora, D., Reales, C., Ruiz-Baier, R.: Stabilized mixed approximation of axisymmetric Brinkman flows. ESAIM Math. Model. Numer. Anal. 49, 855–874 (2015)
Anaya, V., Mora, D., Reales, C., Ruiz-Baier, R.: Mixed methods for a stream-function-vorticity formulation of the axisymmetric Brinkman equations. J. Sci. Comput. 71, 348–364 (2017)
Anaya, V., Mora, D., Reales, C., Ruiz-Baier, R.: A vorticity-pressure finite element formulation for the Brinkman-coupled problem. Numer. Methods Partial Differ. Equ. 35, 528–544 (2019)
Aouadi, S.M., Bernardi, C., Satouri, J.: Mortar spectral element discretization of the Stokes problem in axisymmetric domains. Numer. Methods Partial Differ. Equ. 30, 44–73 (2014)
Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2001/02)
Assous, F., Ciarlet, P., Labrunie, S.: Theoretical tools to solve the axisymmetric Maxwell equations. Math. Methods Appl. Sci. 25, 49–78 (2002)
Belhachmi, Z., Bernardi, C., Deparis, S.: Weighted Clément operator and application to the finite element discretization of the axisymmetric Stokes problem. Numer. Math. 105, 217–247 (2006)
Belhachmi, Z., Bernardi, C., Deparis, S., Hecht, F.: An efficient discretization of the Navier–Stokes equations in an axisymmetric domain. Part 1: The discrete problem and its numerical analysis. J. Sci. Comput. 27, 97–110 (2006)
Bernardi, C., Dauge, M., Maday, Y.: Spectral methods for axisymmetric domains. In: Series in Applied Mathematics. Gauthier-Villars, North Holland, Paris, Amsterdam (1999)
Bernardi, C., Chorfi, N.: Spectral discretization of the vorticity, velocity, and pressure formulation of the Stokes problem. SIAM J. Numer. Anal. 44, 826–850 (2007)
Brezzi, F., Douglas, J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47, 217–235 (1985)
Bürger, R., Ruiz-Baier, R., Torres, H.: A stabilized finite volume element formulation for sedimentation-consolidation processes. SIAM J. Sci. Comput. 34, B265–B289 (2012)
Bürger, R., Kumar, S., Ruiz-Baier, R.: Discontinuous finite volume element discretization for coupled flow-transport problems arising in models of sedimentation. J. Comput. Phys. 299, 446–471 (2015)
Bürger, R., Kenettinkara, S.K., Ruiz-Baier, R., Torres, H.: Coupling of discontinuous Galerkin schemes for viscous flow in porous media with adsorption. SIAM J. Sci. Comput. 40, B637–B662 (2018)
Bürger, R., Méndez, P.E., Ruiz-Baier, R.: Convergence of H(div)-conforming schemes for a new model of sedimentation in circular clarifiers with a rotating rake. Comput. Methods Appl. Mech. Eng. 367, 113130 (2020)
Bürger, R., Méndez, P.E., Ruiz-Baier, R.: On \({\varvec {H}}({\rm div})\)-conforming methods for double-diffusion equations in porous media. SIAM J. Numer. Anal. 57, 1318–1343 (2019)
Cardillo, L., Corsini, A., Delibra, G., Rispoli, F., Tezduyar, T.E.: Flow analysis of a wave-energy air turbine with the SUPG/PSPG stabilization and Discontinuity-Capturing Directional Dissipation. Comput. Fluids 141, 184–190 (2016)
Chen, W., Liu, Y., Wang, C., Wise, S.M.: Convergence analysis of a fully discrete finite difference scheme for the Cahn–Hilliard–Hele–Shaw equation. Math. Comput. 85(301), 2231–2257 (2016)
Çıbık, A., Kaya, S.: Finite element analysis of a projection-based stabilization method for the Darcy–Brinkman equations in double-diffusive convection. Appl. Numer. Math. 64, 35–49 (2013)
Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier–Stokes equations. Math. Comput. 74, 1067–1095 (2005)
Cui, W., Gawecka, K.A., Potts, D.M., Taborda, D.M.G., Zdravković, L.: A Petrov–Galerkin finite element method for 2D transient and steady state highly advective flows in porous media. Comput. Geotech. 100, 158–173 (2018)
D’Elía, J., Nigro, N., Storti, M.: Numerical simulations of axisymmetric inertial waves in a rotating sphere by finite elements. Int. J. Comput. Fluid Dyn. 20, 673–685 (2006)
Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Series Mathématiques et Applications. Springer, Berlin (2011)
Diegel, A.E., Wang, C., Wang, X., Wise, S.M.: Convergence analysis and error estimates for a second order accurate finite element method for the Cahn–Hilliard–Navier–Stokes system. Numer. Math. 137, 495–534 (2017)
Durkish, E.T.: A finite element formulation for axisymmetric swirling flows with application to fuel slosh. M.Sc. Thesis, Clarkson University (2006)
Ervin, V.J.: Approximation of axisymmetric Darcy flow using mixed finite element methods. SIAM J. Numer. Anal. 51, 1421–1442 (2013)
Ervin, V.J.: Approximation of coupled Stokes–Darcy flow in an axisymmetric domain. Comput. Methods Appl. Mech. Eng. 258, 96–108 (2013)
Feng, X.: Fully discrete finite element approximations of the Navier–Stokes–Cahn–Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44, 1049–1072 (2006)
Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms. Springer, Berlin (1986)
Goyeau, B., Songbe, J.P., Gobin, D.: Numerical study of double-diffusive natural convection in a porous cavity using the Darcy–Brinkman formulation. Int. J. Heat Mass Transf. 39, 1363–1378 (1996)
Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195, 6011–6045 (2006)
Hedwig, M., Schröder, P.W.: A grad-div stabilized discontinuous Galerkin based thermal optimization of sorption processes via phase change materials. Technical report 5, Institut für Numerische und Angewandte Mathematik, Georg-August-Universität Göttingen (2015)
Hintermueller, M., Hinze, M., Kahle, C.: An adaptive finite element Moreau–Yosida-based solver for a coupled Cahn–Hilliard/Navier–Stokes system. J. Comput. Phys. 235, 810–827 (2013)
Hughes, T.J.R.: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127, 387–401 (1995)
Kagei, Y., Nishida, T.: On Chorin’s method for stationary solutions of the Oberbeck–Boussinesq equation. J. Math. Fluid Mech. 19, 345–365 (2017)
Karakashian, O.A., Jureidini, W.N.: Nonconforming finite element method for the stationary Navier–Stokes equations. SIAM J. Numer. Anal. 35, 93–120 (1998)
Könnö, J., Stenberg, R.: \({\varvec {H}}({\rm div})\)-conforming finite elements for the Brinkman problem. Math. Models Methods Appl. Sci. 21, 2227–2248 (2011)
Kufner, A.: Weighted Sobolev spaces, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], vol. 31. BSB B.G. Teubner Verlagsgesellschaft, Leipzig (1980)
Lenarda, P., Paggi, M., Ruiz-Baier, R.: Partitioned coupling of advection–diffusion–reaction systems and Brinkman flows. J. Comput. Phys. 344, 281–302 (2017)
Maiti, A., Sharma, H., Basu, J.K., De, S.: Modeling of arsenic adsorption kinetics of synthetic and contaminated groundwater on natural laterite. J. Hazard. Mater. 172, 928–934 (2009)
Maiti, A., Basu, J.K., De, S.: Development of a treated laterite for arsenic adsorption: effects of treatment parameters. Ind. Eng. Chem. Res. 49, 4873–4886 (2010)
Mazzaferro, G.M., Ferro, S.P., Goldschmidt, M.B.: An algorithm for rotating axisymmetric flows: model, validation and industrial applications. Int. J. Numer. Methods Fluids 48, 1101–1121 (2005)
Mercier, B., Raugel, G.: Resolution d’un problème aux limites dans un ouvert axisymétrique par éléments finis en \(r\), \(z\) et séries de Fourier en \(t\). RAIRO Anal. Numér. 16, 405–461 (1982)
Mondal, R., Mondal, S., Kurada, K.V., Bhattacharjee, S., Sengupta, S., Mondal, M., Karmakar, S., De, S., Griffiths, I.M.: Modelling the transport and adsorption dynamics of arsenic in a soil bed filter. Chem. Eng. Sci. 210, 115205 (2019)
Nochetto, R., Pyo, J.-H.: The Gauge–Uzawa finite element method part II: the Boussinesq equations. Math. Models Methods Appl. Sci. 16, 1599–1626 (2006)
Ovalle, E., Araya, R., Concha, F.: The role of wave propagation in hydrocyclone operations I: An axisymmetric streamfunction formulation for a conical hydrocyclone. Chem. Eng. J. 111, 205–211 (2005)
Pyo, J.-H.: Fully discrete finite element approximation for the stabilized Gauge–Uzawa method to solve the Boussinesq equations. J. Appl. Math. 4, 372906 (2013)
Rana, C., Mishra, M., De Wit, A.: Effect of anti-Langmuir adsorption on spreading in porous media. Europhys. Lett. 124, 64003 (2019)
Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia (2008)
Shao, Q., Fahs, M., Younes, A., Makradi, A., Mara, T.: A new benchmark reference solution for double-diffusive convection in a heterogeneous porous medium. Numer. Heat Transf. B 70, 373–392 (2016)
Schröder, P.W., Lehrenfeld, C., Linke, A., Lube, G.: Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier–Stokes equations. SeMA J. 75, 629–653 (2018)
Tang, L.Q., Liu, D., Zhao, F., Tang, G.: Combined heat and moisture convective transport in a partial enclosure with multiple free ports. Appl. Therm. Eng. 30, 977–990 (2010)
Tezduyar, T.E.: Computation of moving boundaries and interfaces and stabilization parameters. Int. J. Numer. Methods Fluids 43, 555–575 (2003)
Turesson, B.O.: Nonlinear Potential Theory and Weighted Sobolev Spaces. Springer, Berlin (2000)
Vanson, J.-M., Boutin, A., Klotz, M., Coudert, F.-X.: Transport and adsorption under liquid flow: the role of pore geometry. Soft Matter 13, 875–885 (2017)
Woodfield, J., Alvarez, M., Gómez-Vargas, B., Ruiz-Baier, R.: Stability and finite element approximation of phase change models for natural convection in porous media. J. Comput. Appl. Math. 360, 117–137 (2019)
Zhuang, Y.J., Yu, H.Z., Zhu, Q.Y.: A thermal non-equilibrium model for 3D double diffusive convection of power-law fluids with chemical reaction in the porous medium. Int. J. Heat Mass Transf. 115, 670–694 (2017)
Zienkiewicz, O.C., Taylor, R.L., Nithiarasu, P.: The Finite Element Method for Fluid Dynamics, 7th edn. Elsevier Butterworth-Heinemann, Oxford (2014)
Acknowledgements
We are thankful to Ian Griffiths (Oxford) for the stimulating discussions about water filter models and for providing the experimental data employed in Sect. 6.2. We also thank the comments of two anonymous referees, which resulted in a number of improvements to the manuscript. In addition, this work has been partially supported by Fondecyt Project 1170473; CRHIAM, Project ANID/FONDAP/15130015; project CONICYT/PIA/AFB170001; by CONICYT through the Becas-Chile program for foreign students; by the Monash Mathematics Research Fund S05802-3951284; by the Ministry of Science and Higher Education of the Russian Federation within the framework of state support for the creation and development of World-Class Research Centers “Digital biodesign and personalized healthcare” No 075-15-2020-926; and by the HPC-Europa3 Transnational Access Grant HPC175QA9K.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Baird, G., Bürger, R., Méndez, P.E. et al. Second-order schemes for axisymmetric Navier–Stokes–Brinkman and transport equations modelling water filters. Numer. Math. 147, 431–479 (2021). https://doi.org/10.1007/s00211-020-01169-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-020-01169-1