Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Cut finite element methods for coupled bulk–surface problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We develop a cut finite element method for a second order elliptic coupled bulk-surface model problem. We prove a priori estimates for the energy and \(L^2\) norms of the error. Using stabilization terms we show that the resulting algebraic system of equations has a similar condition number as a standard fitted finite element method. Finally, we present a numerical example illustrating the accuracy and the robustness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Booty, M., Siegel, M.: A hybrid numerical method for interfacial fluid flow with soluble surfactant. J. Comput. Phys. 229(10), 3864–3883 (2010)

    Article  MATH  Google Scholar 

  2. Elliott, C.M., Ranner, T.: Finite element analysis for a coupled bulk-surface partial differential equation. IMA J. Numer. Anal. 33(2), 377–402 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dziuk, G., Elliott, C.M.: Finite element methods for surface PDEs. Acta Numer. 22, 289–396 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Olshanskii, M.A., Reusken, A., Grande, J.: A finite element method for elliptic equations on surfaces. SIAM J. Numer. Anal. 47, 3339–3358 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burman, E., Claus, S., Hansbo, P., Larson, M.G., Massing, A.: CutFEM: Discretizing geometry and partial differential equations. Internat. J. Numer. Methods Engrg. doi:10.1002/nme.4823 (in press)

  6. Olshanskii, M.A., Reusken, A.: A finite element method for surface PDEs: matrix properties. Numer. Math. 114(3), 491–520 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burman, E., Hansbo, P., Larson, M.G.: A stable cut finite element method for partial differential equations on surfaces: the Laplace-Beltrami operator. Comput. Methods Appl. Mech. Engrg. 285, 188–207 (2015)

    Article  MathSciNet  Google Scholar 

  8. Burman, E., Hansbo, P.: Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl. Numer. Math. 62(4), 328–341 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hansbo, P., Larson, M.G., Zahedi, S.: A cut finite element method for a Stokes interface problem. Appl. Numer. Math. 85, 90–114 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Massing, A., Larson, M.G., Logg, A., Rognes, M.E.: A stabilized Nitsche fictitious domain method for the Stokes problem. J. Sci. Comput. 61, 604–628 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Olshanskii, M.A., Reusken, A., Xu, X.: A stabilized finite element method for advection-diffusion equations on surfaces. IMA J. Numer. Anal. 34(2), 732–758 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Johansson, A., Larson, M.G.: A high order discontinuous Galerkin Nitsche method for elliptic problems with fictitious boundary. Numer. Math. 123(4), 607–628 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Georgievskii, Y., Medvedev, E.S., Stuchebrukhov, A.A.: Proton transport via the membrane surface. Biophys J. 82(6), 2833–2846 (2002)

  14. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer-Verlag, Berlin (2001). Reprint of the 1998 edition

  15. Dieudonné, J.: Foundations of Modern Analysis. Enlarged and corrected printing, Pure and Applied Mathematics, vol. 10-I. Academic Press, New York-London (1969)

  16. Folland, G.B.: Introduction to Partial Differential Equations. Princeton University Press (1995)

  17. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer-Verlag (2008)

  18. Ern, A., Guermond, J.L.: Evaluation of the condition number in linear systems arising in finite element approximations. ESAIM: Math. Model. Numer. Anal. 40, 29–48 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hansbo.

Additional information

This research was supported in part by EPSRC, UK, Grant No. EP/J002313/1, the Swedish Foundation for Strategic Research Grant No. AM13-0029, the Swedish Research Council Grants Nos. 2011-4992, 2013-4708, and 2014-4804, and Swedish strategic research programme eSSENCE.

Appendix

Appendix

Here we will give some details on the inequalities (4.5). First we recall that

$$\begin{aligned} q_h(x) = x + \gamma _h(x)n(x) \quad x \in \Gamma \end{aligned}$$
(6.2)

Now using the definition of the closest point mapping

$$\begin{aligned} y = p(y) + \rho (y)n^e(y) \quad y \in {\Gamma _h}\end{aligned}$$
(6.3)

Setting \(x = p(y)\) in (6.2) we have

$$\begin{aligned} y = p(y) + \gamma _h(p(y)) n^e(y)\quad y \in {\Gamma _h}\end{aligned}$$
(6.4)

and therefore, by uniqueness, \(\rho (y) = \gamma _h(p(y)), \forall y \in {\Gamma _h}\). Thus we have \(\gamma _h = \rho ^L\) and we immediately obtain the first inequality in (4.5) since

$$\begin{aligned} \Vert \gamma _h\Vert _{L^\infty (\Gamma )} = \Vert \rho ^L\Vert _{L^\infty (\Gamma )} = \Vert \rho \Vert _{L^\infty ({\Gamma _h})}\lesssim h^2 \end{aligned}$$
(6.5)

Next using (4.37) we have the identity

$$\begin{aligned} \nabla _\Gamma \gamma _h = \nabla _\Gamma \rho ^L = DF_{h,\Gamma }^T (\nabla _{\Gamma _h}\rho )^L = DF_{h,\Gamma }^T (P_{\Gamma _h}n^e)^L \end{aligned}$$
(6.6)

Estimating the right hand side using (4.24) and (4.96) we finally obtain

$$\begin{aligned} \Vert \nabla _\Gamma \gamma _h \Vert _\Gamma \lesssim \Vert \nabla _{\Gamma _h}\rho \Vert _{\Gamma _h}\lesssim \Vert P_{\Gamma _h}n^e \Vert _{\Gamma _h}\lesssim h \end{aligned}$$
(6.7)

which is the second bound in (4.5).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burman, E., Hansbo, P., Larson, M.G. et al. Cut finite element methods for coupled bulk–surface problems. Numer. Math. 133, 203–231 (2016). https://doi.org/10.1007/s00211-015-0744-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0744-3

Mathematics Subject Classification

Navigation