Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Comparative analysis of the traffic performance of fiber-impairment limited WDM and hybrid OCDM/WDM networks

  • Original Article
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Optical code-division multiplexing (OCDM) is a technique that is currently generating considerable research interest. This paper analyzes and compares the traffic performance of wavelength-division multiplexing (WDM) and hybrid OCDM/WDM-based optical networks. The analysis considers the influence of the limitations of fiber-induced signal impairments on traffic performance and comparisons are performed for an example network utilizing different standardized fiber types. Furthermore, comparisons of traffic performance are also made between different lightpath schemes used in WDM and OCDM/WDM networks. The analysis results show that the OCDM/WDM lightpath schemes significantly outperform the WDM lightpath schemes for given blocking probability criteria. Moreover, the analysis indicates that fiber nonlinearity (which limits the minimum channel spacing) affects the traffic performance more severely compared to fiber dispersion (limits code cardinality).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ramaswami R., Kumar S.N. (2002). Optical networks: a practical perspective. Kaufmann, San Francisco

    Google Scholar 

  2. Zang H., Jue J.P., Murkhejee B. (2000). A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks. Optical Networks Magazine 1(1):47–60

    Google Scholar 

  3. Karafolas N., Uttamchandani D. (1996). Optical fiber code division multiple access networks: a review. Optical Fiber Technol. 2(2):149–168

    Article  Google Scholar 

  4. Kitayama K., Sotobayashi H., Wada N. (1999). Optical code division multiplexing OCDM and its applications to photonics networks. IEICE Trans. Fundamentals E82-A(12):2616–2626

    Google Scholar 

  5. Stok A., Sargent E.H. (2002). The role of optical CDMA in access networks. IEEE Commun. Magazine 40(9):83–87

    Article  Google Scholar 

  6. Mendez A.J. et al. (2000). Strategies for realizing optical CDMA for dense, high-speed, long span, optical network applications. IEEE/OSA J. Lightwave Technol. 18(12):1685–1696

    Article  Google Scholar 

  7. Sotoboyashi H., Chujo W., Kitayama K. (2002). 1.6-b/s/Hz 6.4-Tb/s QPSK-OCDM/WDM (4 OCDM ×  40 WDM ×  40 Gb/s) transmission experiment using optical hard thresholding. IEEE Photonics Technol. Lett. 14(4):555–557

    Article  Google Scholar 

  8. Yang G.C., Kwong W.C. (1997). Performance comparison of multiwavelength CDMA and WDMA+CDMA for fiber-optic networks. IEEE Trans. Commun. 45(11):1426–1434

    Article  Google Scholar 

  9. Sotobayashi H., Chujo W., Kitayama K. (2002). Transparent virtual optical code/wavelength path network. IEEE J. Selected Topics Quantum Electron. 8(3):699–704

    Article  Google Scholar 

  10. Mutafungwa E., Halme S.J. (2002). Analysis of the blocking performance of hybrid OCDM-WDM transport networks. Microwave Optical Technol. Lett. 34(1):61–68

    Article  Google Scholar 

  11. Kim S., Yu K., Park N. (2000). A new family of space/wavelength/time spread three-dimensional optical code for networks. IEEE/OSA J. Lightwave Technol. 18(4):502–511

    Article  Google Scholar 

  12. Lee S.S., Seo S.W. (2002). New construction of multiwavelength optical orthogonal codes. IEEE Trans. Commun. 50(12):2003–2008

    Article  Google Scholar 

  13. Ramamurthy B. et al. (1999). Impact of transmission impairments on the teletraffic performance of wavelength-routed optical networks. IEEE/OSA J. Lightwave Technol. 17(10):1713–1723

    Article  Google Scholar 

  14. Artiglia, M., et al.: Overview of optical fibres and their application in modern transmission systems. Tech. Report 5, CSELT, Turin, Italy, October (2000)

  15. Uchida N. (2002). Development and future prospect of optical fiber technologies. IEICE Trans. Electron. E85-C(4):868–880

    Google Scholar 

  16. Takachio N., Ohteru S. (1998). Scale of WDM transport network using different types of fibers. IEEE J. Selected Areas Commun. 16(7):1320–1326

    Article  Google Scholar 

  17. Stern T.E., Bala K. (1999). Multiwavelength Optical Networks A Layered Approach. Addisson-Wesley, Reading

    Google Scholar 

  18. Chung F.R.K., Salehi J.A., Wei V.K. (1989). Optical orthogonal codes: design, analysis and applications. IEEE Trans. Information Theory 35(3):595–604

    Article  MATH  MathSciNet  Google Scholar 

  19. Tang T.K., Ben Letaief K. (1998). Bit-error rate computation of optical CDMA communication systems by large deviations theory. IEEE Trans. Commun. 46(11):1422–1428

    Article  Google Scholar 

  20. Kloch A. et al. (1999). Wavelength converters. IEICE Trans. Electron. E82-C(8):1475–1486

    Google Scholar 

  21. Elmirghani J.M.H., Mouftah T.H. (2000). All-optical wavelength conversion: technologies and applications in DWDM networks. IEEE Commun. Magazine 38(3):86–92

    Article  Google Scholar 

  22. Kitayama K.I. (1998). Code division multiplexing lightwave networks based upon optical code conversion. IEEE J. Selected Areas Commun. 16(7):1309–1319

    Article  Google Scholar 

  23. Sampson D.D. et al. (2000). Demonstration of reconifgurable all-optical code conversion for photonic code-division multiplexing and networking. Electron. Lett. 36(5):445–447

    Article  Google Scholar 

  24. Wen Y.G., Zhang Y., Chen L.K. (2002). On architecture and limitation of optical multiprotocol label switching (MPLS) networks using optical-orthogonal-code (OOC)/wavelength label. Optical Fiber Technol. 8(1):43–70

    Article  Google Scholar 

  25. Sotoboyashi H., Kitayama K. (1999). All-optical simultaneous code and wavelength conversion of 10 Gbit/s BPSK codes by four-wave mixing in semiconductor optical amplifier for optical code division multiplexing. IEEE Electron. Lett. 35(13):1091–1093

    Article  Google Scholar 

  26. Yoshimura H., Sato K.I., Takachio N. (1999). Future photonic transport networks based on WDM technologies. IEEE Commun. Magazine 37(2):74–81

    Article  Google Scholar 

  27. Sunnerud H. et al. (2002). A comparison between different PMD techniques. IEEE/OSA J. Lightwave Technol. 20(3):368–378

    Article  Google Scholar 

  28. Kissing J., Gravenmann T., Voges E. (2003). Analytical probability density function for the Q-factor due to PMD and noise. IEEE Photonics Technol. Lett. 15(4):611–613

    Article  Google Scholar 

  29. Tang J.T.K., Letaief K.B. (1999). Optical CDMA communication systems with multiuser and blind detection. IEEE Trans. Commun. 20(3):1211–1217

    Article  Google Scholar 

  30. Zahedi S., Salehi J.A. (2000). Analytical comparison of various fiber-optic CDMA receiver structures. IEEE/OSA J. Lightwave Technol. 18(12):1718–1727

    Article  Google Scholar 

  31. Dale M.R., Gagliardi R.M. (1995). Channel coding for asynchronous fiberoptic CDMA communications. IEEE Trans. Commun. 43(9):2485–2492

    Article  Google Scholar 

  32. Azmi P., Nasiri-Kenari M., Salehi J.A. (2001). Low-rate super-orthogonal channel coding for fiber-optic CDMA communication systems. IEEE/OSA J. Lightwave Technol. 19(6):847–855

    Article  Google Scholar 

  33. Pasqual H., Yashima H. (1999). Analysis of optical PPM/CDMA system with M-Ary convolutional coding. IEICE Trans. Commun. E82-B(10):1618–1625

    Google Scholar 

  34. Srivastava A., Kar S., Jain V.K. (2002). Forward error correcting codes in fiber-opticsynchronous code-division multiple access networks. Optics Commun. 202(4):287–296

    Article  Google Scholar 

  35. Lundqvist H. (2003). Error correction coding for optical CDMA. PhD thesis, Royal Institute of Technology, Stockholm, Sweden

    Google Scholar 

  36. Kim J.Y., Poor H.V. (2000). Turbo-coded packet transmission for an optical CDMA network. IEEE/OSA J. Lightwave Technol. 18(12):1905–1916

    Article  Google Scholar 

  37. Argon C., McLaughlin S.W. (2002). Optical OOK-CDMA and PPM-CDMA systems with turbo product codes. IEEE/OSA J. Lightwave Technol. 20(9):1653–1663

    Article  Google Scholar 

  38. Numai T., Kubota O. (2000). Analysis of repeated unequally spaced channels for FDM lightwave systems. IEEE/OSA J. Lightwave Technol. 18(3):656–664

    Article  Google Scholar 

  39. Eiselt M. (1999). Limits on WDM systems due to four-wave mixing: a statistical approach. IEEE/OSA J. Lightwave Technol. 17(11):2261–2267

    Article  Google Scholar 

  40. Forghieri F., Tkach R.W., Chraplyvy A.R. (1995). WDM systems with unequally spaced channels. IEEE/OSA J. Lightwave Technol. 13(5):889–897

    Article  Google Scholar 

  41. Hwang B., Tonguz O.K. (1998). A generalized suboptimum spaced channel allocation technique part-I: In IM/DD WDM systems. IEEE Trans. Commun. 48(8):1027–1037

    Article  Google Scholar 

  42. Miao X. (1996). Unequally spaced channels for upgrading WDM system from 3-channel to 10-channel preserving no FWM crosstalk. Optical Fiber Technol. 2(4):347–350

    Article  Google Scholar 

  43. Ohteru S., Takachio N. (2000). Methodology of unequally spaced frequency allocation for WDM transmission systems using typical dispersion-shifted fiber cable. IEICE Trans. Commun. E83-B(6):1290–1297

    Google Scholar 

  44. Ishida, O., Takachio, N.: Unequal channel spacing compatible with equally spaced WDM systems. In: Proceedings of Pacific Rim Conference on Laser and Electro-Optics, pp. 30–31. Chiba, Japan, (July 1997)

  45. Jinno M. et al. (August 1998). WDM transmission technologies for dispersion-shifted fibers. IEICE Trans. Electron. E81-C(8):1264–1275

    Google Scholar 

  46. Sardesai, H.P.: A simple channel plan to reduce effects of nonlinearities in dense WDM systems. In: Proceedings of Conference on Laser and Electro-Optics, pp. 183–184. Oslo, Norway (1999)

  47. Kovačević M., Acampora A. (1996). Benefits of wavelength translation in all-optical clear-channel networks. IEEE J. Selected Areas Commun. 14(5):868–880

    Article  Google Scholar 

  48. Mutafungwa E. (2001). Optical hop number limits imposed by various 2 × 2 cross-connect node designs. Optics Express 9(8):400–410

    Google Scholar 

  49. Betti S., Giaconi M., Nardini M. (2003). Effect of four-wave mixing on WDM optical systems: a statistical analysis. IEEE Photonics Technol. Lett. 15(8):1079–1081

    Article  Google Scholar 

  50. Düser M., Bayvel P. (2002). Analysis of a dynamically wavelength-routed optical burst switched network architecture. IEEE/OSA J. Lightwave Technol. 20(4):574–585

    Article  Google Scholar 

  51. Shalaby M.H. (2003). Optical CDMA random access protocols with and without pre-transmission coordination. IEEE/OSA J. Lightwave Technol. 21(11):2455–2462

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Mutafungwa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mutafungwa, E. Comparative analysis of the traffic performance of fiber-impairment limited WDM and hybrid OCDM/WDM networks. Photon Netw Commun 13, 53–66 (2007). https://doi.org/10.1007/PL00022062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00022062

Keywords

Navigation