Abstract
We study the contribution of a heavy right-handed Majorana neutrino to neutrinoless double beta decay (0νββ) via four-fermion effective interactions of Nambu-Jona-Lasinio (NJL) type. In this physical scenario, the sterile neutrino contributes to the nuclear transition through gauge, contact, and mixed interactions. Using the lower limit on the half-life of 0νββ from the KamLAND-Zen experiment, we then constrain the effective right-handed coupling between the sterile neutrino and the W boson: \( {\mathcal{G}}_R^W \). Eventually, we show that the obtained bounds are compatible with those found in the literature, which highlights the complementarity of this type of phenomenological study with high-energy experiments.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
C.S. Wu, E. Ambler, R.W. Hayward, D.D. Hoppes and R.P. Hudson, Experimental Test of Parity Conservation in β Decay, Phys. Rev. 105 (1957) 1413 [INSPIRE].
CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
ATLAS collaboration, Search for new phenomena in dijet events using 37 fb−1 of pp collision data collected at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. D 96 (2017) 052004 [arXiv:1703.09127] [INSPIRE].
CMS collaboration, Search for new physics in dijet angular distributions using proton-proton collisions at \( \sqrt{s} \) = 13 TeV and constraints on dark matter and other models, Eur. Phys. J. C 78 (2018) 789 [Erratum ibid. 82 (2022) 379] [arXiv:1803.08030] [INSPIRE].
GERDA collaboration, Final Results of GERDA on the Search for Neutrinoless Double-β Decay, Phys. Rev. Lett. 125 (2020) 252502 [arXiv:2009.06079] [INSPIRE].
CUORE collaboration, First Results from CUORE: A Search for Lepton Number Violation via 0νββ Decay of 130Te, Phys. Rev. Lett. 120 (2018) 132501 [arXiv:1710.07988] [INSPIRE].
KamLAND-Zen collaboration, Search for the Majorana Nature of Neutrinos in the Inverted Mass Ordering Region with KamLAND-Zen, Phys. Rev. Lett. 130 (2023) 051801 [arXiv:2203.02139] [INSPIRE].
W.H. Furry, On transition probabilities in double beta-disintegration, Phys. Rev. 56 (1939) 1184 [INSPIRE].
Y.B. Zeldovich and M.Y. Khlopov, Study of the neutrino mass in a double beta-decay, JETP Lett. 34 (1981) 141.
M. Agostini, G. Benato, J.A. Detwiler, J. Menéndez and F. Vissani, Toward the discovery of matter creation with neutrinoless ββ decay, Rev. Mod. Phys. 95 (2023) 025002 [arXiv:2202.01787] [INSPIRE].
J. Schechter and J.W.F. Valle, Neutrinoless Double beta Decay in SU(2) × U(1) Theories, Phys. Rev. D 25 (1982) 2951 [INSPIRE].
E. der Mateosian and M. Goldhaber, A new limit for neutrinoless double beta decay, in proceedings of the 12th International Conference on High Energy Physics (ICHEP 64), Dubna, U.R.S.S., 5–15 August 1964 [INSPIRE].
E. Fiorini, A. Pullia, G. Bertolini, F. Cappellani and G. Restelli, A Search for Lepton Nonconservation in Double Beta Decay With a Germanium Detector, Phys. Lett. B 25 (1967) 602 [INSPIRE].
LEGEND collaboration, The Large Enriched Germanium Experiment for Neutrinoless ββ Decay: LEGEND-1000 Preconceptual Design Report, arXiv:2107.11462 [INSPIRE].
nEXO collaboration, nEXO: neutrinoless double beta decay search beyond 1028 year half-life sensitivity, J. Phys. G 49 (2022) 015104 [arXiv:2106.16243] [INSPIRE].
A.D. McDonald et al., Demonstration of Single Barium Ion Sensitivity for Neutrinoless Double Beta Decay using Single Molecule Fluorescence Imaging, Phys. Rev. Lett. 120 (2018) 132504 [arXiv:1711.04782] [INSPIRE].
R. Nakamura, H. Sambonsugi, K. Shiraishi and Y. Wada, Research and development toward KamLAND2-Zen, J. Phys. Conf. Ser. 1468 (2020) 012256 [INSPIRE].
M. Blennow, E. Fernandez-Martinez, J. Lopez-Pavon and J. Menendez, Neutrinoless double beta decay in seesaw models, JHEP 07 (2010) 096 [arXiv:1005.3240] [INSPIRE].
M. Mitra, G. Senjanovic and F. Vissani, Neutrinoless Double Beta Decay and Heavy Sterile Neutrinos, Nucl. Phys. B 856 (2012) 26 [arXiv:1108.0004] [INSPIRE].
T. Asaka and S. Eijima, Direct Search for Right-handed Neutrinos and Neutrinoless Double Beta Decay, Prog. Theor. Exp. Phys. 2013 (2013) 113B02 [arXiv:1308.3550] [INSPIRE].
J. Barea and F. Iachello, Neutrinoless double-beta decay in the microscopic interacting boson model, Phys. Rev. C 79 (2009) 044301 [INSPIRE].
O. Panella, C. Carimalo, Y.N. Srivastava and A. Widom, Neutrinoless double beta decay with composite neutrinos, Phys. Rev. D 56 (1997) 5766 [hep-ph/9701251] [INSPIRE].
S. Biondini et al., Complementarity between neutrinoless double beta decay and collider searches for heavy neutrinos in composite-fermion models, arXiv:2111.01053 [INSPIRE].
A. Faessler, M. González, S. Kovalenko and F. Šimkovic, Arbitrary mass Majorana neutrinos in neutrinoless double beta decay, Phys. Rev. D 90 (2014) 096010 [arXiv:1408.6077] [INSPIRE].
P.W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].
Y. Nambu and G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. Part II, Phys. Rev. 124 (1961) 246 [INSPIRE].
Y. Nambu and G. Jona-Lasinio, Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. Part 1, Phys. Rev. 122 (1961) 345 [INSPIRE].
W.A. Bardeen, C.T. Hill and M. Lindner, Minimal Dynamical Symmetry Breaking of the Standard Model, Phys. Rev. D 41 (1990) 1647 [INSPIRE].
S.-S. Xue, Higgs Boson and Top-Quark Masses and Parity-Symmetry Restoration, Phys. Lett. B 727 (2013) 308 [arXiv:1308.6486] [INSPIRE].
S.-S. Xue, Hierarchy spectrum of SM fermions: from top quark to electron neutrino, JHEP 11 (2016) 072 [arXiv:1605.01266] [INSPIRE].
S.-S. Xue, Spontaneous Peccei-Quinn symmetry breaking renders sterile neutrino, axion and χ boson to be candidates for dark matter particles, Nucl. Phys. B 980 (2022) 115817 [arXiv:2012.04648] [INSPIRE].
S.-S. Xue, W boson mass tension caused by its right-handed gauge coupling at high energies?, Nucl. Phys. B 985 (2022) 115992 [arXiv:2205.14957] [INSPIRE].
S.-S. Xue, An effective strong-coupling theory of composite particles in UV-domain, JHEP 05 (2017) 146 [arXiv:1601.06845] [INSPIRE].
H.B. Nielsen and M. Ninomiya, Absence of Neutrinos on a Lattice. Part 2. Intuitive Topological Proof, Nucl. Phys. B 193 (1981) 173 [INSPIRE].
H.B. Nielsen and M. Ninomiya, No Go Theorem for Regularizing Chiral Fermions, Phys. Lett. B 105 (1981) 219 [INSPIRE].
S.-S. Xue, A Possible scaling region of chiral fermions on a lattice, Nucl. Phys. B 486 (1997) 282 [hep-lat/9605005] [INSPIRE].
S.-S. Xue, Higgs boson origin from a gauge symmetric theory of massive composite particles and massless W± and Z0 bosons at the TeV scale, Nucl. Phys. B 990 (2023) 116168 [arXiv:2210.04825] [INSPIRE].
R. Leonardi, O. Panella, F. Romeo, A. Gurrola, H. Sun and S.-S. Xue, Phenomenology at the LHC of composite particles from strongly interacting Standard Model fermions via four-fermion operators of NJL type, Eur. Phys. J. C 80 (2020) 309 [arXiv:1810.11420] [INSPIRE].
CMS collaboration, Probing Heavy Majorana Neutrinos and the Weinberg Operator through Vector Boson Fusion Processes in Proton-Proton Collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. Lett. 131 (2023) 011803 [arXiv:2206.08956] [INSPIRE].
CMS collaboration, Search for heavy neutral leptons in events with three charged leptons in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. Lett. 120 (2018) 221801 [arXiv:1802.02965] [INSPIRE].
CMS collaboration, Search for heavy Majorana neutrinos in same-sign dilepton channels in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 01 (2019) 122 [arXiv:1806.10905] [INSPIRE].
M. Haghighat, S. Mahmoudi, R. Mohammadi, S. Tizchang and S.-S. Xue, Circular polarization of cosmic photons due to their interactions with Sterile neutrino dark matter, Phys. Rev. D 101 (2020) 123016 [arXiv:1909.03883] [INSPIRE].
S. Shakeri, F. Hajkarim and S.-S. Xue, Shedding New Light on Sterile Neutrinos from XENON1T Experiment, JHEP 12 (2020) 194 [arXiv:2008.05029] [INSPIRE].
J. Kotila, J. Ferretti and F. Iachello, Long-range neutrinoless double beta decay mechanisms, arXiv:2110.09141 [INSPIRE].
F. Simkovic, G. Pantis, J.D. Vergados and A. Faessler, Additional nucleon current contributions to neutrinoless double beta decay, Phys. Rev. C 60 (1999) 055502 [hep-ph/9905509] [INSPIRE].
F.F. Deppisch, L. Graf, F. Iachello and J. Kotila, Analysis of light neutrino exchange and short-range mechanisms in 0νββ decay, Phys. Rev. D 102 (2020) 095016 [arXiv:2009.10119] [INSPIRE].
H.J. Lipkin, On the description of collective motion by the use of superfluous co-ordinates, Nuovo Cim. 4 (1956) 1147 [INSPIRE].
T. Tomoda, Double beta decay, Rept. Prog. Phys. 54 (1991) 53 [INSPIRE].
M. Doi, T. Kotani, H. Nishiura and E. Takasugi, Double Beta Decay, Prog. Theor. Phys. 69 (1983) 602 [INSPIRE].
S.A. Díaz, K.-P. Schröder, K. Zuber, D. Jack and E.E.B. Barrios, Constraint on the axion-electron coupling constant and the neutrino magnetic dipole moment by using the tip-RGB luminosity of fifty globular clusters, arXiv:1910.10568 [INSPIRE].
M.J. Dolinski, A.W.P. Poon and W. Rodejohann, Neutrinoless Double-Beta Decay: Status and Prospects, Ann. Rev. Nucl. Part. Sci. 69 (2019) 219 [arXiv:1902.04097] [INSPIRE].
MiniBooNE collaboration, Significant Excess of ElectronLike Events in the MiniBooNE Short-Baseline Neutrino Experiment, Phys. Rev. Lett. 121 (2018) 221801 [arXiv:1805.12028] [INSPIRE].
MiniBooNE collaboration, Updated MiniBooNE neutrino oscillation results with increased data and new background studies, Phys. Rev. D 103 (2021) 052002 [arXiv:2006.16883] [INSPIRE].
Muon g − 2 collaboration, Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm, Phys. Rev. Lett. 126 (2021) 141801 [arXiv:2104.03281] [INSPIRE].
Acknowledgments
The work of M.P. was supported by the Alexander von Humboldt-Stiftung.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2304.08042
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Pacioselli, L., Panella, O., Presilla, M. et al. Constraints on NJL four-fermion effective interactions from neutrinoless double beta decay. J. High Energ. Phys. 2023, 54 (2023). https://doi.org/10.1007/JHEP11(2023)054
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP11(2023)054