Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Predicting the τ strange branching ratios and implications for V us

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Hadronic τ decays provide several ways to extract the Cabbibo-Kobashi-Maskawa (CKM) matrix element V us . The most precise determination involves using inclusive τ decays and requires as input the total branching ratio into strange final states. Recent results from B-factories have led to a discrepancy of about 3.4σ from the value of V us implied by CKM unitarity and direct determination from Kaon semi-leptonic modes. In this paper we predict the three leading strange τ branching ratios, using dispersive parameterizations of the hadronic form factors and taking as experimental input the measured Kaon decay rates and the τKπν τ decay spectrum. We then use our results to reevaluate V us , for which we find |V us | = 0.2207 ± 0.0027, in better agreement with CKM unitarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Braaten, S. Narison and A. Pich, QCD analysis of the tau hadronic width, Nucl. Phys. B 373 (1992) 581 [INSPIRE].

    Article  ADS  Google Scholar 

  2. Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of B-Hadron, C-Hadron and tau-lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].

  3. V. Bernard, D. Boito and E. Passemar, Dispersive representation of the scalar and vector Kπ form factors for τKπν τ and K l3 decays, Nucl. Phys. Proc. Suppl. 218 (2011) 140 [arXiv:1103.4855] [INSPIRE].

    Article  ADS  Google Scholar 

  4. V. Bernard, D.R. Boito and E. Passemar, Combined analysis of τKπν τ , K 3 decays and πK scattering: towards a fully consistent determination of f +(0)|V us |, work in preparation (2013).

  5. E. Gamiz, M. Jamin, A. Pich, J. Prades and F. Schwab, Determination of m s and |V us | from hadronic tau decays, JHEP 01 (2003) 060 [hep-ph/0212230] [INSPIRE].

    Article  ADS  Google Scholar 

  6. E. Gamiz, M. Jamin, A. Pich, J. Prades and F. Schwab, V us and m s from hadronic τ decays, Phys. Rev. Lett. 94 (2005) 011803 [hep-ph/0408044] [INSPIRE].

    Article  ADS  Google Scholar 

  7. M. Antonelli et al., An evaluation of |V us | and precise tests of the Standard Model from world data on leptonic and semileptonic kaon decays, Eur. Phys. J. C 69 (2010) 399 [arXiv:1005.2323] [INSPIRE].

    Article  ADS  Google Scholar 

  8. Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  9. W.J. Marciano and A. Sirlin, Radiative corrections to π 2 decays, Phys. Rev. Lett. 71 (1993) 3629 [INSPIRE].

    Article  ADS  Google Scholar 

  10. J. Erler, Electroweak radiative corrections to semileptonic τ decays, Rev. Mex. Fis. 50 (2004) 200 [hep-ph/0211345] [INSPIRE].

    Google Scholar 

  11. R. Decker and M. Finkemeier, Radiative corrections to the decay τπ(K)ν τ , Phys. Lett. B 316 (1993) 403 [hep-ph/9307372] [INSPIRE].

    Article  ADS  Google Scholar 

  12. V. Cirigliano, M. Knecht, H. Neufeld, H. Rupertsberger and P. Talavera, Radiative corrections to K l3 decays, Eur. Phys. J. C 23 (2002) 121 [hep-ph/0110153] [INSPIRE].

  13. V. Cirigliano, H. Neufeld and H. Pichl, K e3 decays and CKM unitarity, Eur. Phys. J. C 35 (2004) 53 [hep-ph/0401173] [INSPIRE].

    Article  ADS  Google Scholar 

  14. P. Buettiker, S. Descotes-Genon and B. Moussallam, A new analysis of πK scattering from Roy and Steiner type equations, Eur. Phys. J. C 33 (2004) 409 [hep-ph/0310283] [INSPIRE].

    ADS  Google Scholar 

  15. A. Pich and J. Portoles, The vector form-factor of the pion from unitarity and analyticity: a model independent approach, Phys. Rev. D 63 (2001) 093005 [hep-ph/0101194] [INSPIRE].

    ADS  Google Scholar 

  16. D.R. Boito, R. Escribano and M. Jamin, Kπ vector form-factor, dispersive constraints and τν τ Kπ decays, Eur. Phys. J. C 59 (2009) 821 [arXiv:0807.4883] [INSPIRE].

    Article  ADS  Google Scholar 

  17. D. Boito, R. Escribano and M. Jamin, Kπ vector form factor constrained by τKπν τ and K l3 decays, JHEP 09 (2010) 031 [arXiv:1007.1858] [INSPIRE].

    Article  ADS  Google Scholar 

  18. M. Jamin, A. Pich and J. Portoles, Spectral distribution for the decay τν τ , Phys. Lett. B 640 (2006) 176 [hep-ph/0605096] [INSPIRE].

    Article  ADS  Google Scholar 

  19. M. Jamin, A. Pich and J. Portoles, What can be learned from the Belle spectrum for the decay τ ν τ K S π , Phys. Lett. B 664 (2008) 78 [arXiv:0803.1786] [INSPIRE].

    Article  ADS  Google Scholar 

  20. G. Gounaris and J. Sakurai, Finite width corrections to the vector meson dominance prediction for ρe + e , Phys. Rev. Lett. 21 (1968) 244 [INSPIRE].

    Article  ADS  Google Scholar 

  21. L. Beldjoudi and T.N. Truong, τπKν decay and πK scattering, Phys. Lett. B 351 (1995) 357 [hep-ph/9411423] [INSPIRE].

    Article  ADS  Google Scholar 

  22. B. Moussallam, Analyticity constraints on the strangeness changing vector current and applications to τKπν τ , τKππν τ , Eur. Phys. J. C 53 (2008) 401 [arXiv:0710.0548] [INSPIRE].

    Article  ADS  Google Scholar 

  23. V. Bernard, M. Oertel, E. Passemar and J. Stern, \( K_{{\mu 3}}^L \) decay: a stringent test of right-handed quark currents, Phys. Lett. B 638 (2006) 480 [hep-ph/0603202] [INSPIRE].

    Article  ADS  Google Scholar 

  24. V. Bernard, M. Oertel, E. Passemar and J. Stern, Dispersive representation and shape of the K l3 form factors: robustness, Phys. Rev. D 80 (2009) 034034 [arXiv:0903.1654] [INSPIRE].

    ADS  Google Scholar 

  25. Belle collaboration, D. Epifanov et al., Study of τ K S π ν τ decay at Belle, Phys. Lett. B 654 (2007) 65 [arXiv:0706.2231] [INSPIRE].

    Article  ADS  Google Scholar 

  26. BaBar collaboration, S. Paramesvaran, Selected topics in τ physics from BaBar, arXiv:0910.2884 [INSPIRE].

  27. Belle II collaboration, T. Abe, Belle II Technical Design Report, arXiv:1011.0352 [INSPIRE].

  28. V. Cirigliano, M. Giannotti and H. Neufeld, Electromagnetic effects in K l3 decays, JHEP 11 (2008) 006 [arXiv:0807.4507] [INSPIRE].

    Article  ADS  Google Scholar 

  29. V. Cirigliano, G. Ecker and H. Neufeld, Isospin violation and the magnetic moment of the muon, Phys. Lett. B 513 (2001) 361 [hep-ph/0104267] [INSPIRE].

    Article  ADS  Google Scholar 

  30. V. Cirigliano, G. Ecker and H. Neufeld, Radiative τ decay and the magnetic moment of the muon, JHEP 08 (2002) 002 [hep-ph/0207310] [INSPIRE].

    Article  ADS  Google Scholar 

  31. G. Colangelo et al., Review of lattice results concerning low energy particle physics, Eur. Phys. J. C 71 (2011) 1695 [arXiv:1011.4408] [INSPIRE].

    Article  ADS  Google Scholar 

  32. V. Cirigliano et al., Towards a consistent estimate of the chiral low-energy constants, Nucl. Phys. B 753 (2006) 139 [hep-ph/0603205] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. Kastner and H. Neufeld, The K l3 scalar form factors in the standard model, Eur. Phys. J. C 57 (2008) 541 [arXiv:0805.2222] [INSPIRE].

    Article  ADS  Google Scholar 

  34. K. Maltman and C.E. Wolfe, V us from hadronic tau decays, Phys. Lett. B 639 (2006) 283 [hep-ph/0603215] [INSPIRE].

    Article  ADS  Google Scholar 

  35. E. Gamiz, M. Jamin, A. Pich, J. Prades and F. Schwab, Theoretical progress on the V us determination from tau decays, PoS(KAON)008 [arXiv:0709.0282] [INSPIRE].

  36. K. Maltman, A Critical look at V us determinations from hadronic τ decay data, Nucl. Phys. Proc. Suppl. 218 (2011) 146 [arXiv:1011.6391] [INSPIRE].

    Article  ADS  Google Scholar 

  37. J. Hardy and I. Towner, Superallowed 0+ → 0+ nuclear beta decays: a new survey with precision tests of the conserved vector current hypothesis and the standard model, Phys. Rev. C 79 (2009) 055502 [arXiv:0812.1202] [INSPIRE].

    ADS  Google Scholar 

  38. V. Mateu and A. Pich, V us determination from hyperon semileptonic decays, JHEP 10 (2005) 041 [hep-ph/0509045] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilie Passemar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonelli, M., Cirigliano, V., Lusiani, A. et al. Predicting the τ strange branching ratios and implications for V us . J. High Energ. Phys. 2013, 70 (2013). https://doi.org/10.1007/JHEP10(2013)070

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)070

Keywords

Navigation