Abstract
The Fermilab Muon g −2 experiment recently reported its first measurement of the anomalous magnetic moment \( {a}_{\mu}^{\mathrm{FNAL}} \), which is in full agreement with the previous BNL measurement and pushes the world average deviation \( \Delta {a}_{\mu}^{2021} \) from the Standard Model to a significance of 4.2σ. Here we provide an extensive survey of its impact on beyond the Standard Model physics. We use state-of-the-art calculations and a sophisticated set of tools to make predictions for aμ, dark matter and LHC searches in a wide range of simple models with up to three new fields, that represent some of the few ways that large ∆aμ can be explained. In addition for the particularly well motivated Minimal Supersymmetric Standard Model, we exhaustively cover the scenarios where large ∆aμ can be explained while simultaneously satisfying all relevant data from other experiments. Generally, the aμ result can only be explained by rather small masses and/or large couplings and enhanced chirality flips, which can lead to conflicts with limits from LHC and dark matter experiments. Our results show that the new measurement excludes a large number of models and provides crucial constraints on others. Two-Higgs doublet and leptoquark models provide viable explanations of aμ only in specific versions and in specific parameter ranges. Among all models with up to three fields, only models with chirality enhancements can accommodate aμ and dark matter simultaneously. The MSSM can simultaneously explain aμ and dark matter for Bino-like LSP in several coannihilation regions. Allowing under abundance of the dark matter relic density, the Higgsino- and particularly Wino-like LSP scenarios become promising explanations of the aμ result.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Muon g-2 collaboration, Muon (g − 2) technical design report, arXiv:1501.06858 [INSPIRE].
Muon g-2 collaboration, Measurement of the positive muon anomalous magnetic moment to 0.46 ppm, Phys. Rev. Lett. 126 (2021) 141801 [arXiv:2104.03281] [INSPIRE].
Muon g-2 collaboration, Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
T. Aoyama et al., The anomalous magnetic moment of the muon in the standard model, Phys. Rept. 887 (2020) 1 [arXiv:2006.04822] [INSPIRE].
T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Complete tenth-order QED contribution to the muon g − 2, Phys. Rev. Lett. 109 (2012) 111808 [arXiv:1205.5370] [INSPIRE].
T. Aoyama, T. Kinoshita and M. Nio, Theory of the anomalous magnetic moment of the electron, Atoms 7 (2019) 28 [INSPIRE].
A. Czarnecki, W.J. Marciano and A. Vainshtein, Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev. D 67 (2003) 073006 [Erratum ibid. 73 (2006) 119901] [hep-ph/0212229] [INSPIRE].
C. Gnendiger, D. Stöckinger and H. Stöckinger-Kim, The electroweak contributions to (g − 2)μ after the Higgs boson mass measurement, Phys. Rev. D 88 (2013) 053005 [arXiv:1306.5546] [INSPIRE].
M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g − 2 and α(\( {m}_Z^2 \)) using newest hadronic cross-section data, Eur. Phys. J. C 77 (2017) 827 [arXiv:1706.09436] [INSPIRE].
A. Keshavarzi, D. Nomura and T. Teubner, Muon g − 2 and α(\( {M}_Z^2 \)): a new data-based analysis, Phys. Rev. D 97 (2018) 114025 [arXiv:1802.02995] [INSPIRE].
G. Colangelo, M. Hoferichter and P. Stoffer, Two-pion contribution to hadronic vacuum polarization, JHEP 02 (2019) 006 [arXiv:1810.00007] [INSPIRE].
M. Hoferichter, B.-L. Hoid and B. Kubis, Three-pion contribution to hadronic vacuum polarization, JHEP 08 (2019) 137 [arXiv:1907.01556] [INSPIRE].
M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to α(\( {m}_Z^2 \)), Eur. Phys. J. C 80 (2020) 241 [Erratum ibid. 80 (2020) 410] [arXiv:1908.00921] [INSPIRE].
A. Keshavarzi, D. Nomura and T. Teubner, g − 2 of charged leptons, α(\( {M}_Z^2 \)), and the hyperfine splitting of muonium, Phys. Rev. D 101 (2020) 014029 [arXiv:1911.00367] [INSPIRE].
A. Kurz, T. Liu, P. Marquard and M. Steinhauser, Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order, Phys. Lett. B 734 (2014) 144 [arXiv:1403.6400] [INSPIRE].
K. Melnikov and A. Vainshtein, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment revisited, Phys. Rev. D 70 (2004) 113006 [hep-ph/0312226] [INSPIRE].
P. Masjuan and P. Sanchez-Puertas, Pseudoscalar-pole contribution to the (gμ − 2): a rational approach, Phys. Rev. D 95 (2017) 054026 [arXiv:1701.05829] [INSPIRE].
G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Dispersion relation for hadronic light-by-light scattering: two-pion contributions, JHEP 04 (2017) 161 [arXiv:1702.07347] [INSPIRE].
M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold and S.P. Schneider, Dispersion relation for hadronic light-by-light scattering: pion pole, JHEP 10 (2018) 141 [arXiv:1808.04823] [INSPIRE].
A. Gérardin, H.B. Meyer and A. Nyffeler, Lattice calculation of the pion transition form factor with Nf = 2 + 1 Wilson quarks, Phys. Rev. D 100 (2019) 034520 [arXiv:1903.09471] [INSPIRE].
J. Bijnens, N. Hermansson-Truedsson and A. Rodríguez-Sánchez, Short-distance constraints for the HLbL contribution to the muon anomalous magnetic moment, Phys. Lett. B 798 (2019) 134994 [arXiv:1908.03331] [INSPIRE].
G. Colangelo, F. Hagelstein, M. Hoferichter, L. Laub and P. Stoffer, Longitudinal short-distance constraints for the hadronic light-by-light contribution to (g − 2)μ with large-Nc Regge models, JHEP 03 (2020) 101 [arXiv:1910.13432] [INSPIRE].
V. Pauk and M. Vanderhaeghen, Single meson contributions to the muon‘s anomalous magnetic moment, Eur. Phys. J. C 74 (2014) 3008 [arXiv:1401.0832] [INSPIRE].
I. Danilkin and M. Vanderhaeghen, Light-by-light scattering sum rules in light of new data, Phys. Rev. D 95 (2017) 014019 [arXiv:1611.04646] [INSPIRE].
F. Jegerlehner, The anomalous magnetic moment of the muon, Springer Tracts Modern Physics volume 274, Springer, Germany (2017).
M. Knecht, S. Narison, A. Rabemananjara and D. Rabetiarivony, Scalar meson contributions to a μ from hadronic light-by-light scattering, Phys. Lett. B 787 (2018) 111 [arXiv:1808.03848] [INSPIRE].
G. Eichmann, C.S. Fischer and R. Williams, Kaon-box contribution to the anomalous magnetic moment of the muon, Phys. Rev. D 101 (2020) 054015 [arXiv:1910.06795] [INSPIRE].
P. Roig and P. Sanchez-Puertas, Axial-vector exchange contribution to the hadronic light-by-light piece of the muon anomalous magnetic moment, Phys. Rev. D 101 (2020) 074019 [arXiv:1910.02881] [INSPIRE].
T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, C. Jung et al., Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD, Phys. Rev. Lett. 124 (2020) 132002 [arXiv:1911.08123] [INSPIRE].
G. Colangelo, M. Hoferichter, A. Nyffeler, M. Passera and P. Stoffer, Remarks on higher-order hadronic corrections to the muon g − 2, Phys. Lett. B 735 (2014) 90 [arXiv:1403.7512] [INSPIRE].
Fermilab Lattice, LATTICE-HPQCD, MILC collaboration, Strong-isospin-breaking correction to the muon anomalous magnetic moment from lattice QCD at the physical point, Phys. Rev. Lett. 120 (2018) 152001 [arXiv:1710.11212] [INSPIRE].
Budapest-Marseille-Wuppertal collaboration, Hadronic vacuum polarization contribution to the anomalous magnetic moments of leptons from first principles, Phys. Rev. Lett. 121 (2018) 022002 [arXiv:1711.04980] [INSPIRE].
RBC, UKQCD collaboration, Calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment, Phys. Rev. Lett. 121 (2018) 022003 [arXiv:1801.07224] [INSPIRE].
D. Giusti, V. Lubicz, G. Martinelli, F. Sanfilippo and S. Simula, Electromagnetic and strong isospin-breaking corrections to the muon g − 2 from lattice QCD+QED, Phys. Rev. D 99 (2019) 114502 [arXiv:1901.10462] [INSPIRE].
PACS collaboration, Hadronic vacuum polarization contribution to the muon g − 2 with 2 + 1 flavor lattice QCD on a larger than (10 fm)4 lattice at the physical point, Phys. Rev. D 100 (2019) 034517 [arXiv:1902.00885] [INSPIRE].
Fermilab Lattice, LATTICE-HPQCD, MILC collaboration, Hadronic-vacuum-polarization contribution to the muon’s anomalous magnetic moment from four-flavor lattice QCD, Phys. Rev. D 101 (2020) 034512 [arXiv:1902.04223] [INSPIRE].
A. Gérardin et al., The leading hadronic contribution to (g − 2)μ from lattice QCD with Nf = 2 + 1 flavours of O(a) improved Wilson quarks, Phys. Rev. D 100 (2019) 014510 [arXiv:1904.03120] [INSPIRE].
C. Aubin, T. Blum, C. Tu, M. Golterman, C. Jung and S. Peris, Light quark vacuum polarization at the physical point and contribution to the muon g − 2, Phys. Rev. D 101 (2020) 014503 [arXiv:1905.09307] [INSPIRE].
D. Giusti and S. Simula, Lepton anomalous magnetic moments in Lattice QCD+QED, PoS(LATTICE2019)104 [arXiv:1910.03874] [INSPIRE].
S. Borsányi et al., Leading hadronic contribution to the muon magnetic moment from lattice QCD, Nature 593 (2021) 51 [arXiv:2002.12347] [INSPIRE].
C. Lehner and A.S. Meyer, Consistency of hadronic vacuum polarization between lattice QCD and the R-ratio, Phys. Rev. D 101 (2020) 074515 [arXiv:2003.04177] [INSPIRE].
G. Colangelo, M. Hoferichter and P. Stoffer, Constraints on the two-pion contribution to hadronic vacuum polarization, Phys. Lett. B 814 (2021) 136073 [arXiv:2010.07943] [INSPIRE].
P. Athron, J.-h. Park, D. Stöckinger and A. Voigt, FlexibleSUSY — A spectrum generator generator for supersymmetric models, Comput. Phys. Commun. 190 (2015) 139 [arXiv:1406.2319] [INSPIRE].
P. Athron et al., FlexibleSUSY 2.0: extensions to investigate the phenomenology of SUSY and non-SUSY models, Comput. Phys. Commun. 230 (2018) 145 [arXiv:1710.03760] [INSPIRE].
P. Athron et al., GM2Calc: precise MSSM prediction for (g − 2) of the muon, Eur. Phys. J. C 76 (2016) 62 [arXiv:1510.08071] [INSPIRE].
K. Melnikov and A. Vainshtein, Theory of the muon anomalous magnetic moment, Springer, Germany (2006) [INSPIRE].
F. Jegerlehner and A. Nyffeler, The Muon g-2, Phys. Rept. 477 (2009) 1 [arXiv:0902.3360] [INSPIRE].
A. Czarnecki and W.J. Marciano, The muon anomalous magnetic moment: a harbinger for ‘new physics’, Phys. Rev. D 64 (2001) 013014 [hep-ph/0102122] [INSPIRE].
D. Stöckinger, The muon magnetic moment and supersymmetry, J. Phys. G 34 (2007) R45 [hep-ph/0609168] [INSPIRE].
D. Stöckinger, Muon (g − 2) and physics beyond the standard model, Adv. Ser. Direct. High Energy Phys. 20 (2009) 393 [INSPIRE].
M. Lindner, M. Platscher and F.S. Queiroz, A call for new physics: the muon anomalous magnetic moment and lepton flavor violation, Phys. Rept. 731 (2018) 1 [arXiv:1610.06587] [INSPIRE].
R.L. Arnowitt, B. Dutta, B. Hu and Y. Santoso, Muon g − 2, dark matter detection and accelerator physics, Phys. Lett. B 505 (2001) 177 [hep-ph/0102344] [INSPIRE].
A. Czarnecki and W.J. Marciano, The Muon anomalous magnetic moment: A Harbinger for ‘new physics’, Phys. Rev. D 64 (2001) 013014 [hep-ph/0102122] [INSPIRE].
E.A. Baltz and P. Gondolo, Implications of muon anomalous magnetic moment for supersymmetric dark matter, Phys. Rev. Lett. 86 (2001) 5004 [hep-ph/0102147] [INSPIRE].
L.L. Everett, G.L. Kane, S. Rigolin and L.-T. Wang, Implications of muon g-2 for supersymmetry and for discovering superpartners directly, Phys. Rev. Lett. 86 (2001) 3484 [hep-ph/0102145] [INSPIRE].
J.L. Feng and K.T. Matchev, Supersymmetry and the anomalous magnetic moment of the muon, Phys. Rev. Lett. 86 (2001) 3480 [hep-ph/0102146] [INSPIRE].
U. Chattopadhyay and P. Nath, Upper limits on sparticle masses from g-2 and the possibility for discovery of SUSY at colliders and in dark matter searches, Phys. Rev. Lett. 86 (2001) 5854 [hep-ph/0102157] [INSPIRE].
D. Choudhury, B. Mukhopadhyaya and S. Rakshit, Muon anomalous magnetic moment confronts exotic fermions and gauge bosons, Phys. Lett. B 507 (2001) 219 [hep-ph/0102199] [INSPIRE].
S. Komine, T. Moroi and M. Yamaguchi, Recent result from E821 experiment on muon g − 2 and unconstrained minimal supersymmetric standard model, Phys. Lett. B 506 (2001) 93 [hep-ph/0102204] [INSPIRE].
U. Mahanta, Constraining new physics in the TeV range by the recent BNL measurement of (g − 2)μ, Phys. Lett. B 511 (2001) 235 [hep-ph/0102211] [INSPIRE].
P. Das, S. Kumar Rai and S. Raychaudhuri, Anomalous magnetic moment of the muon in a composite model, hep-ph/0102242 [INSPIRE].
K.-m. Cheung, Muon anomalous magnetic moment and leptoquark solutions, Phys. Rev. D 64 (2001) 033001 [hep-ph/0102238] [INSPIRE].
T.W. Kephart and H. Pas, Muon anomalous magnetic moment in string inspired extended family models, Phys. Rev. D 65 (2002) 093014 [hep-ph/0102243] [INSPIRE].
E. Ma and M. Raidal, Neutrino mass, muon anomalous magnetic moment, and lepton flavor nonconservation, Phys. Rev. Lett. 87 (2001) 011802 [Erratum ibid. 87 (2001) 159901] [hep-ph/0102255] [INSPIRE].
J. Hisano and K. Tobe, Neutrino masses, muon g − 2, and lepton flavor violation in the supersymmetric seesaw model, Phys. Lett. B 510 (2001) 197 [hep-ph/0102315] [INSPIRE].
Z.-z. Xing, Nearly bimaximal neutrino mixing, muon g − 2 anomaly and lepton flavor violating processes, Phys. Rev. D 64 (2001) 017304 [hep-ph/0102304] [INSPIRE].
T. Ibrahim, U. Chattopadhyay and P. Nath, Constraints on explicit CP-violation from the Brookhaven muon g − 2 experiment, Phys. Rev. D 64 (2001) 016010 [hep-ph/0102324] [INSPIRE].
J.R. Ellis, D.V. Nanopoulos and K.A. Olive, Combining the muon anomalous magnetic moment with other constraints on the CMSSM, Phys. Lett. B 508 (2001) 65 [hep-ph/0102331] [INSPIRE].
A. Dedes and H.E. Haber, A light higgs boson explanation for the g − 2 crisis, in the proceedings of the 36th Rencontres de Moriond on Electroweak Interactions and Unified Theories, March 10–17, Les Arcs, France (2001) [hep-ph/0105014] [INSPIRE].
M.B. Einhorn and J. Wudka, Model independent analysis of g(muon)−2, Phys. Rev. Lett. 87 (2001) 071805 [hep-ph/0103034] [INSPIRE].
K. Choi, K. Hwang, S.K. Kang, K.Y. Lee and W.Y. Song, Probing the messenger of supersymmetry breaking by the muon anomalous magnetic moment, Phys. Rev. D 64 (2001) 055001 [hep-ph/0103048] [INSPIRE].
S.K. Kang and K.Y. Lee, Implications of the muon anomalous magnetic moment and Higgs mediated flavor changing neutral currents, Phys. Lett. B 521 (2001) 61 [hep-ph/0103064] [INSPIRE].
J.E. Kim, B. Kyae and H.M. Lee, Effective supersymmetric theory and (g-2)(muon with R-parity violation, Phys. Lett. B 520 (2001) 298 [hep-ph/0103054] [INSPIRE].
S.P. Martin and J.D. Wells, Muon anomalous magnetic dipole moment in supersymmetric theories, Phys. Rev. D 64 (2001) 035003 [hep-ph/0103067] [INSPIRE].
S. Rajpoot, Muon anomalous magnetic moment in models with singlet fermions, hep-ph/0103069 [INSPIRE].
C.A. de S. Pires and P.S. Rodrigues da Silva, Scalar scenarios contributing to (g − 2)(muon) with enhanced Yukawa couplings, Phys. Rev. D 64 (2001) 117701 [hep-ph/0103083] [INSPIRE].
S. Komine, T. Moroi and M. Yamaguchi, No scale scenarios in the light of new measurement of muon anomalous magnetic moment, Phys. Lett. B 507 (2001) 224 [hep-ph/0103182] [INSPIRE].
K.-m. Cheung, C.-H. Chou and O.C.W. Kong, Muon anomalous magnetic moment, two Higgs doublet model, and supersymmetry, Phys. Rev. D 64 (2001) 111301 [hep-ph/0103183] [INSPIRE].
S. Baek, P. Ko and H.S. Lee, Muon anomalous magnetic moment, B → Xsγ and dark matter detection in the string models with dilaton domination, Phys. Rev. D 65 (2002) 035004 [hep-ph/0103218] [INSPIRE].
M. Raidal, Enhancement of radiatively induced magnetic moment form-factors of muon: an effective lagrangian approach, Phys. Lett. B 508 (2001) 51 [hep-ph/0103224] [INSPIRE].
D.F. Carvalho, J.R. Ellis, M.E. Gomez and S. Lola, Charged lepton flavor violation in the CMSSM in view of the muon anomalous magnetic moment, Phys. Lett. B 515 (2001) 323 [hep-ph/0103256][INSPIRE].
H. Baer, C. Balázs, J. Ferrandis and X. Tata, Impact of muon anomalous magnetic moment on supersymmetric models, Phys. Rev. D 64 (2001) 035004 [hep-ph/0103280] [INSPIRE].
Z. Chacko and G.D. Kribs, Constraints on lepton flavor violation in the MSSM from the muon anomalous magnetic moment measurement, Phys. Rev. D 64 (2001) 075015 [hep-ph/0104317] [INSPIRE].
Y.-L. Wu and Y.-F. Zhou, Muon anomalous magnetic moment in the standard model with two Higgs doublets, Phys. Rev. D 64 (2001) 115018 [hep-ph/0104056] [INSPIRE].
S. Baek, T. Goto, Y. Okada and K.-i. Okumura, Muon anomalous magnetic moment, lepton flavor violation, and flavor changing neutral current processes in SUSY GUT with right-handed neutrino, Phys. Rev. D 64 (2001) 095001 [hep-ph/0104146] [INSPIRE].
C.-H. Chen and C.Q. Geng, The Muon anomalous magnetic moment from a generic charged Higgs with SUSY, Phys. Lett. B 511 (2001) 77 [hep-ph/0104151] [INSPIRE].
A. Arhrib and S. Baek, Two loop Barr-Zee type contributions to (g − 2)(muon) in the MSSM, Phys. Rev. D 65 (2002) 075002 [hep-ph/0104225] [INSPIRE].
K. Enqvist, E. Gabrielli and K. Huitu, g − 2 of the muon in SUSY models with gauge multiplets in the bulk of extra dimensions, Phys. Lett. B 512 (2001) 107 [hep-ph/0104174] [INSPIRE].
D.G. Cerdeno, E. Gabrielli, S. Khalil, C. Muñoz and E. Torrente-Lujan, Muon anomalous magnetic moment in supersymmetric scenarios with an intermediate scale and nonuniversality, Phys. Rev. D 64 (2001) 093012 [hep-ph/0104242] [INSPIRE].
Y.G. Kim and M.M. Nojiri, Implications of muon anomalous magnetic moment for direct detection of neutralino dark matter, Prog. Theor. Phys. 106 (2001) 561 [hep-ph/0104258] [INSPIRE].
T. Blazek and S.F. King, Muon anomalous magnetic moment and τ → μγ in a realistic string inspired model of neutrino masses, Phys. Lett. B 518 (2001) 109 [hep-ph/0105005] [INSPIRE].
G.-C. Cho and K. Hagiwara, Supersymmetric contributions to muon g − 2 and the electroweak precision measurements, Phys. Lett. B 514 (2001) 123 [hep-ph/0105037] [INSPIRE].
S. Barshay and G. Kreyerhoff, Stronger neutrino interactions at extremely high-energies and the muon anomalous magnetic moment, Eur. Phys. J. C 23 (2002) 191 [hep-ph/0106047] [INSPIRE].
R.L. Arnowitt, B. Dutta and Y. Santoso, SUSY phases, the electron electric dipole moment and the muon magnetic moment, Phys. Rev. D 64 (2001) 113010 [hep-ph/0106089] [INSPIRE].
G. Bélanger, F. Boudjema, A. Cottrant, R.M. Godbole and A. Semenov, The MSSM invisible Higgs in the light of dark matter and g − 2, Phys. Lett. B 519 (2001) 93 [hep-ph/0106275] [INSPIRE].
W. de Boer, M. Huber, C. Sander and D.I. Kazakov, A Global fit to the anomalous magnetic moment, b → Xsγ and Higgs limits in the constrained MSSM, hep-ph/0106311 [INSPIRE].
L. Roszkowski, R. Ruiz de Austri and T. Nihei, New cosmological and experimental constraints on the CMSSM, JHEP 08 (2001) 024 [hep-ph/0106334] [INSPIRE].
Y. Daikoku, Muon anomalous magnetic dipole moment in the μ problem solvable extra U(1) models, hep-ph/0107305 [INSPIRE].
R. Adhikari, E. Ma and G. Rajasekaran, Supersymmetric model of muon anomalous magnetic moment and neutrino masses, Phys. Rev. D 65 (2002) 077703 [hep-ph/0108167] [INSPIRE].
X.-J. Wang and M.-L. Yan, Noncommutative QED and muon anomalous magnetic moment, JHEP 03 (2002) 047 [hep-th/0109095] [INSPIRE].
W. de Boer, M. Huber, C. Sander and D.I. Kazakov, A global fit to the anomalous magnetic moment, b → X/sγ and Higgs limits in the constrained MSSM, Phys. Lett. B 515 (2001) 283 [INSPIRE].
N. Kersting, Muon g − 2 from noncommutative geometry, Phys. Lett. B 527 (2002) 115 [hep-ph/0109224] [INSPIRE].
Y.-F. Zhou and Y.-L. Wu, Lepton flavor changing scalar interactions and muon g − 2, Eur. Phys. J. C 27 (2003) 577 [hep-ph/0110302] [INSPIRE].
M. Endo and T. Moroi, Muon magnetic dipole moment and Higgs mass in supersymmetric SU(5) models, Phys. Lett. B 525 (2002) 121 [hep-ph/0110383] [INSPIRE].
G. Cacciapaglia, M. Cirelli and G. Cristadoro, Muon anomalous magnetic moment in a calculable model with one extra dimension, Nucl. Phys. B 634 (2002) 230 [hep-ph/0111288] [INSPIRE].
E. Ma and D.P. Roy, Anomalous neutrino interaction, muon g − 2, and atomic parity nonconservation, Phys. Rev. D 65 (2002) 075021 [hep-ph/0111385] [INSPIRE].
G.-C. Cho, N. Haba and J. Hisano, The Stau exchange contribution to muon g − 2 in the decoupling solution, Phys. Lett. B 529 (2002) 117 [hep-ph/0112163] [INSPIRE].
S.C. Park and H.S. Song, Muon anomalous magnetic moment and the stabilized Randall-Sundrum scenario, Phys. Lett. B 506 (2001) 99 [hep-ph/0103072] [INSPIRE].
C.S. Kim, J.D. Kim and J.-H. Song, Muon anomalous magnetic moment (g − 2)(muon) and the Randall-Sundrum model, Phys. Lett. B 511 (2001) 251 [hep-ph/0103127] [INSPIRE].
K. Agashe, N.G. Deshpande and G.H. Wu, Can extra dimensions accessible to the SM explain the recent measurement of anomalous magnetic moment of the muon?, Phys. Lett. B 511 (2001) 85 [hep-ph/0103235] [INSPIRE].
X. Calmet and A. Neronov, Kaluza-Klein theories and the anomalous magnetic moment of the muon, Phys. Rev. D 65 (2002) 067702 [hep-ph/0104278] [INSPIRE].
T. Appelquist and B.A. Dobrescu, Universal extra dimensions and the muon magnetic moment, Phys. Lett. B 516 (2001) 85 [hep-ph/0106140] [INSPIRE].
P.K. Das, Muon anomalous magnetic moment and a lower bound on Higgs mass due to stabilized radion in the Randall-Sundrum model, Int. J. Mod. Phys. A 21 (2006) 5205 [hep-ph/0407041] [INSPIRE].
Z.-H. Xiong and J.M. Yang, Muon anomalous magnetic moment in technicolor models, Phys. Lett. B 508 (2001) 295 [hep-ph/0102259] [INSPIRE].
X. Calmet, H. Fritzsch and D. Holtmannspotter, The anomalous magnetic moment of the muon and radiative lepton decays, Phys. Rev. D 64 (2001) 037701 [hep-ph/0103012] [INSPIRE].
Y.-B. Dai, C.-S. Huang and A. Zhang, g − 2 in composite models of leptons, J. Phys. G 28 (2002) 139 [hep-ph/0103317] [INSPIRE].
C.-x. Yue, Q.-j. Xu and G.-l. Liu, Topcolor assisted technicolor models and muon anomalous magnetic moment, J. Phys. G 27 (2001) 1807 [hep-ph/0103084] [INSPIRE].
F. Tabbakh, J.-J. Liu and W.-G. Ma, Muon g − 2 in the littlest Higgs model, Commun. Theor. Phys. 45 (2006) 894 [INSPIRE].
M. Blanke, A.J. Buras, B. Duling, A. Poschenrieder and C. Tarantino, Charged lepton flavour violation and (g − 2)(μ) in the littlest Higgs model with T-parity: a clear distinction from supersymmetry, JHEP 05 (2007) 013 [hep-ph/0702136] [INSPIRE].
E.O. Iltan and H. Sundu, Anomalous magnetic moment of muon in the general two Higgs doublet model, Acta Phys. Slov. 53 (2003) 17 [hep-ph/0103105] [INSPIRE].
M. Krawczyk, The new (g − 2) for muon measurement and limits on the light Higgs bosons in 2HDM (II), hep-ph/0103223 [INSPIRE].
F. Larios, G. Tavares-Velasco and C.P. Yuan, A very light CP odd scalar in the two Higgs doublet model, Phys. Rev. D 64 (2001) 055004 [hep-ph/0103292] [INSPIRE].
M. Krawczyk, Precision muon g-2 results and light Higgs bosons in the 2HDM(II), Acta Phys. Polon. B 33 (2002) 2621 [hep-ph/0208076] [INSPIRE].
D. Chakraverty, D. Choudhury and A. Datta, A nonsupersymmetric resolution of the anomalous muon magnetic moment, Phys. Lett. B 506 (2001) 103 [hep-ph/0102180] [INSPIRE].
U. Mahanta, Implications of BNL measurement of δa(μ) on a class of scalar leptoquark interactions, Eur. Phys. J. C 21 (2001) 171 [hep-ph/0102176] [INSPIRE].
T. Huang, Z.H. Lin, L.Y. Shan and X. Zhang, Muon anomalous magnetic moment and lepton flavor violation, Phys. Rev. D 64 (2001) 071301 [hep-ph/0102193] [INSPIRE].
S.N. Gninenko and N.V. Krasnikov, The muon anomalous magnetic moment and a new light gauge boson, Phys. Lett. B 513 (2001) 119 [hep-ph/0102222] [INSPIRE].
K.R. Lynch, Extended electroweak interactions and the muon g − 2, Phys. Rev. D 65 (2002) 053006 [hep-ph/0108080] [INSPIRE].
S. Baek, N.G. Deshpande, X.G. He and P. Ko, Muon anomalous g − 2 and gauged L(muon)–L(tau) models, Phys. Rev. D 64 (2001) 055006 [hep-ph/0104141] [INSPIRE].
E. Ma, D.P. Roy and S. Roy, Gauged L(mu)–L(tau) with large muon anomalous magnetic moment and the bimaximal mixing of neutrinos, Phys. Lett. B 525 (2002) 101 [hep-ph/0110146] [INSPIRE].
B. Murakami, The Impact of lepton flavor violating Z′ bosons on muon g − 2 and other muon observables, Phys. Rev. D 65 (2002) 055003 [hep-ph/0110095] [INSPIRE].
M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002 [arXiv:0811.1030] [INSPIRE].
J.H. Heo, About a peculiar U(1): Z′ discovery limit, muon anomalous magnetic moment, Electron electric dipole moment, Phys. Rev. D 80 (2009) 033001 [arXiv:0811.0298] [INSPIRE].
C.-S. Huang and W. Liao, (g − 2)(μ) and CP asymmetries in B0(d, s) → ℓ+ℓ− and b → sγ in SUSY models, Phys. Lett. B 538 (2002) 301 [hep-ph/0201121] [INSPIRE].
E. Kiritsis and P. Anastasopoulos, The anomalous magnetic moment of the muon in the D-brane realization of the standard model, JHEP 05 (2002) 054 [hep-ph/0201295] [INSPIRE].
P. Das and U. Mahanta, Testable muon g − 2 contribution due to a light stabilized radion in the Randall-Sundrum model, Nucl. Phys. B 644 (2002) 395 [hep-ph/0202193] [INSPIRE].
S. Baek, P. Ko and J.-h. Park, Muon anomalous magnetic moment from effective supersymmetry, Eur. Phys. J. C 24 (2002) 613 [hep-ph/0203251] [INSPIRE].
U. Chattopadhyay and P. Nath, Interpreting the new Brookhaven muon (g − 2) result, Phys. Rev. D 66 (2002) 093001 [hep-ph/0208012] [INSPIRE].
M. Byrne, C. Kolda and J.E. Lennon, Updated implications of the muon anomalous magnetic moment for supersymmetry, Phys. Rev. D 67 (2003) 075004 [hep-ph/0208067] [INSPIRE].
Y.G. Kim, T. Nihei, L. Roszkowski and R. Ruiz de Austri, Upper and lower limits on neutralino WIMP mass and spin independent scattering cross-section, and impact of new (g-2)(mu) measurement, JHEP 12 (2002) 034 [hep-ph/0208069] [INSPIRE].
S. Baek, P. Ko and W.Y. Song, SUSY breaking mediation mechanisms and (g − 2)(μ), B → Xsγ, B → Xsℓ+ℓ− and Bs → μ+μ−, JHEP 03 (2003) 054 [hep-ph/0208112] [INSPIRE].
S.P. Martin and J.D. Wells, Superconservative interpretation of muon g − 2 results applied to supersymmetry, Phys. Rev. D 67 (2003) 015002 [hep-ph/0209309] [INSPIRE].
G.G. Boyarkina and O.M. Boyarkin, The (g − 2)μ anomaly, Higgs bosons and heavy neutrinos, Phys. Rev. D 67 (2003) 073023 [arXiv:2104.08640] [INSPIRE].
H. Chavez, C.N. Ferreira and J.A. Helayel-Neto, Physics beyond the standard model: focusing on the muon anomaly, Phys. Rev. D 74 (2006) 033006 [hep-ph/0410373] [INSPIRE].
K. Sawa, Muon anomalous magnetic moment due to the brane stretching effect, Phys. Rev. D 73 (2006) 025010 [hep-ph/0506190] [INSPIRE].
J.A.R. Cembranos, A. Dobado and A.L. Maroto, Dark matter clues in the muon anomalous magnetic moment, Phys. Rev. D 73 (2006) 057303 [hep-ph/0507066] [INSPIRE].
T. Hambye, K. Kannike, E. Ma and M. Raidal, Emanations of dark matter: muon anomalous magnetic moment, radiative neutrino mass, and novel leptogenesis at the TeV scale, Phys. Rev. D 75 (2007) 095003 [hep-ph/0609228] [INSPIRE].
O.M. Boyarkin, G.G. Boyarkina and V.V. Makhnach, (g − 2)μ anomaly within the left-right symmetric model, Phys. Rev. D 77 (2008) 033004 [arXiv:2104.06320] [INSPIRE].
J.-P. Aguilar, D. Greynat and E. De Rafael, Muon anomaly from lepton vacuum polarization and the Mellin-Barnes representation, Phys. Rev. D 77 (2008) 093010 [arXiv:0802.2618] [INSPIRE].
A. Hektor, Y. Kajiyama and K. Kannike, Muon anomalous magnetic moment and lepton flavor violating tau decay in unparticle physics, Phys. Rev. D 78 (2008) 053008 [arXiv:0802.4015] [INSPIRE].
F. Domingo and U. Ellwanger, Constraints from the muon g − 2 on the parameter space of the NMSSM, JHEP 07 (2008) 079 [arXiv:0806.0733] [INSPIRE].
C. Biggio, The contribution of fermionic seesaws to the anomalous magnetic moment of leptons, Phys. Lett. B 668 (2008) 378 [arXiv:0806.2558] [INSPIRE].
Y. Adachi, C.S. Lim and N. Maru, Lower bound for compactification scale from muon g − 2 in the gauge-Higgs unification, Nucl. Phys. B 839 (2010) 52 [arXiv:0904.1695] [INSPIRE].
K. Cheung, O.C.W. Kong and J.S. Lee, Electric and anomalous magnetic dipole moments of the muon in the MSSM, JHEP 06 (2009) 020 [arXiv:0904.4352] [INSPIRE].
L. Hofer, U. Nierste and D. Scherer, Resummation of tan β-enhanced supersymmetric loop corrections beyond the decoupling limit, JHEP 10 (2009) 081 [arXiv:0907.5408] [INSPIRE].
T. Fukuyama, H. Sugiyama and K. Tsumura, Constraints from muon g − 2 and LFV processes in the Higgs triplet model, JHEP 03 (2010) 044 [arXiv:0909.4943] [INSPIRE].
C.M. Ho and T.W. Kephart, Electron and muon g − 2 contributions from the T′ Higgs sector, Phys. Lett. B 687 (2010) 201 [arXiv:1001.3696] [INSPIRE].
A. Crivellin, J. Girrbach and U. Nierste, Yukawa coupling and anomalous magnetic moment of the muon: an update for the LHC era, Phys. Rev. D 83 (2011) 055009 [arXiv:1010.4485] [INSPIRE].
S. Heinemeyer, D. Stöckinger and G. Weiglein, Two loop SUSY corrections to the anomalous magnetic moment of the muon, Nucl. Phys. B 690 (2004) 62 [hep-ph/0312264] [INSPIRE].
S. Heinemeyer, D. Stöckinger and G. Weiglein, Electroweak and supersymmetric two-loop corrections to (g − 2)(μ), Nucl. Phys. B 699 (2004) 103 [hep-ph/0405255] [INSPIRE].
T.-F. Feng, X.-Q. Li, L. Lin, J. Maalampi and H.-S. Song, The two-loop supersymmetric corrections to lepton anomalous magnetic and electric dipole moments, Phys. Rev. D 73 (2006) 116001 [hep-ph/0604171] [INSPIRE].
S. Marchetti, S. Mertens, U. Nierste and D. Stöckinger, tan β-enhanced supersymmetric corrections to the anomalous magnetic moment of the muon, Phys. Rev. D 79 (2009) 013010 [arXiv:0808.1530] [INSPIRE].
P. von Weitershausen, M. Schafer, H. Stöckinger-Kim and D. Stöckinger, Photonic SUSY two-loop corrections to the muon magnetic moment, Phys. Rev. D 81 (2010) 093004 [arXiv:1003.5820] [INSPIRE].
H.G. Fargnoli, C. Gnendiger, S. Paßehr, D. Stöckinger and H. Stöckinger-Kim, Non-decoupling two-loop corrections to (g − 2)μ from fermion/sfermion loops in the MSSM, Phys. Lett. B 726 (2013) 717 [arXiv:1309.0980] [INSPIRE].
H. Fargnoli, C. Gnendiger, S. Paßehr, D. Stöckinger and H. Stöckinger-Kim, Two-loop corrections to the muon magnetic moment from fermion/sfermion loops in the MSSM: detailed results, JHEP 02 (2014) 070 [arXiv:1311.1775] [INSPIRE].
G.-C. Cho, K. Hagiwara, Y. Matsumoto and D. Nomura, The MSSM confronts the precision electroweak data and the muon g − 2, JHEP 11 (2011) 068 [arXiv:1104.1769] [INSPIRE].
M. Endo, K. Hamaguchi, S. Iwamoto, K. Nakayama and N. Yokozaki, Higgs mass and muon anomalous magnetic moment in the U(1) extended MSSM, Phys. Rev. D 85 (2012) 095006 [arXiv:1112.6412] [INSPIRE].
M. Endo, K. Hamaguchi, S. Iwamoto and N. Yokozaki, Higgs mass and muon anomalous magnetic moment in supersymmetric models with vector-like matters, Phys. Rev. D 84 (2011) 075017 [arXiv:1108.3071] [INSPIRE].
M. Endo, K. Hamaguchi, S. Iwamoto and N. Yokozaki, Higgs mass, muon g − 2, and LHC prospects in gauge mediation models with vector-like matters, Phys. Rev. D 85 (2012) 095012 [arXiv:1112.5653] [INSPIRE].
M. Ibe, S. Matsumoto, T.T. Yanagida and N. Yokozaki, Heavy squarks and light sleptons in gauge mediation — from the viewpoint of 125 GeV Higgs boson and muon g − 2, JHEP 03 (2013) 078 [arXiv:1210.3122] [INSPIRE].
J.E. Kim, Inverted effective supersymmetry with combined Z′ and gravity mediation, and muon anomalous magnetic moment, Phys. Rev. D 87 (2013) 015004 [arXiv:1208.5484] [INSPIRE].
M. Endo, K. Hamaguchi, S. Iwamoto and T. Yoshinaga, Muon g − 2 vs. LHC in supersymmetric models, JHEP 01 (2014) 123 [arXiv:1303.4256] [INSPIRE].
M. Ibe, T.T. Yanagida and N. Yokozaki, Muon g − 2 and 125 GeV Higgs in split-family supersymmetry, JHEP 08 (2013) 067 [arXiv:1303.6995] [INSPIRE].
S. Akula and P. Nath, Gluino-driven radiative breaking, Higgs boson mass, muon g − 2, and the Higgs diphoton decay in supergravity unification, Phys. Rev. D 87 (2013) 115022 [arXiv:1304.5526] [INSPIRE].
H.-B. Zhang, T.-F. Feng, S.-M. Zhao and T.-J. Gao, Lepton-flavor violation and (g − 2)μ in the μνSSM, Nucl. Phys. B 873 (2013) 300 [Erratum ibid. 879 (2014) 235] [arXiv:1304.6248] [INSPIRE].
M. Endo, K. Hamaguchi, T. Kitahara and T. Yoshinaga, Probing Bino contribution to muon g − 2, JHEP 11 (2013) 013 [arXiv:1309.3065] [INSPIRE].
G. Bhattacharyya, B. Bhattacherjee, T.T. Yanagida and N. Yokozaki, A practical GMSB model for explaining the muon (g − 2) with gauge coupling unification, Phys. Lett. B 730 (2014) 231 [arXiv:1311.1906] [INSPIRE].
J.L. Evans, M. Ibe, K.A. Olive and T.T. Yanagida, One-loop anomaly mediated scalar masses and (g − 2)mu in pure gravity mediation, Eur. Phys. J. C 74 (2014) 2775 [arXiv:1312.1984] [INSPIRE].
S. Iwamoto, T.T. Yanagida and N. Yokozaki, CP-safe gravity mediation and muon g − 2, PTEP 2015 (2015) 073B01 [arXiv:1407.4226] [INSPIRE].
J. Kersten, J.-h. Park, D. Stöckinger and L. Velasco-Sevilla, Understanding the correlation between (g − 2)μ and μ → eγ in the MSSM, JHEP 08 (2014) 118 [arXiv:1405.2972] [INSPIRE].
I. Gogoladze, F. Nasir, Q. Shafi and C.S. Un, Nonuniversal gaugino masses and muon g − 2, Phys. Rev. D 90 (2014) 035008 [arXiv:1403.2337] [INSPIRE].
M. Badziak, Z. Lalak, M. Lewicki, M. Olechowski and S. Pokorski, Upper bounds on sparticle masses from muon g − 2 and the Higgs mass and the complementarity of future colliders, JHEP 03 (2015) 003 [arXiv:1411.1450] [INSPIRE].
K. Kowalska, L. Roszkowski, E.M. Sessolo and A.J. Williams, GUT-inspired SUSY and the muon g − 2 anomaly: prospects for LHC 14 TeV, JHEP 06 (2015) 020 [arXiv:1503.08219] [INSPIRE].
J. Chakrabortty, A. Choudhury and S. Mondal, Non-universal Gaugino mass models under the lamppost of muon (g − 2), JHEP 07 (2015) 038 [arXiv:1503.08703] [INSPIRE].
B.P. Padley, K. Sinha and K. Wang, Natural supersymmetry, muon g − 2, and the last crevices for the top squark, Phys. Rev. D 92 (2015) 055025 [arXiv:1505.05877] [INSPIRE].
M. Bach, J.-h. Park, D. Stöckinger and H. Stöckinger-Kim, Large muon (g − 2) with TeV-scale SUSY masses for tan β → ∞, JHEP 10 (2015) 026 [arXiv:1504.05500] [INSPIRE].
K. Harigaya, T.T. Yanagida and N. Yokozaki, Muon g − 2 in focus point SUSY, Phys. Rev. D 92 (2015) 035011 [arXiv:1505.01987] [INSPIRE].
D. Chowdhury and N. Yokozaki, Muon g − 2 in anomaly mediated SUSY breaking, JHEP 08 (2015) 111 [arXiv:1505.05153] [INSPIRE].
S. Khalil and C.S. Un, Muon anomalous magnetic moment in SUSY B-L model with inverse seesaw, Phys. Lett. B 763 (2016) 164 [arXiv:1509.05391] [INSPIRE].
M.A. Ajaib, B. Dutta, T. Ghosh, I. Gogoladze and Q. Shafi, Neutralinos and sleptons at the LHC in light of muon (g − 2)μ, Phys. Rev. D 92 (2015) 075033 [arXiv:1505.05896] [INSPIRE].
K. Harigaya, T.T. Yanagida and N. Yokozaki, Higgs boson mass of 125 GeV and g − 2 of the muon in a gaugino mediation model, Phys. Rev. D 91 (2015) 075010 [arXiv:1501.07447] [INSPIRE].
I. Gogoladze, Q. Shafi and C.S. Ün, Reconciling the muon g − 2, a 125 GeV Higgs boson, and dark matter in gauge mediation models, Phys. Rev. D 92 (2015) 115014 [arXiv:1509.07906] [INSPIRE].
F.V. Flores-Baez, M. Gómez Bock and M. Mondragón, Muon g − 2 through a flavor structure on soft SUSY terms, Eur. Phys. J. C 76 (2016) 561 [arXiv:1512.00902] [INSPIRE].
A.S. Belyaev, J.E. Camargo-Molina, S.F. King, D.J. Miller, A.P. Morais and P.B. Schaefers, A to Z of the muon anomalous magnetic moment in the MSSM with Pati-Salam at the GUT scale, JHEP 06 (2016) 142 [arXiv:1605.02072] [INSPIRE].
T. Li, S. Raza and K. Wang, Constraining natural SUSY via the Higgs coupling and the muon anomalous magnetic moment measurements, Phys. Rev. D 93 (2016) 055040 [arXiv:1601.00178] [INSPIRE].
N. Okada and H.M. Tran, 125 GeV Higgs boson mass and muon g − 2 in 5D MSSM, Phys. Rev. D 94 (2016) 075016 [arXiv:1606.05329] [INSPIRE].
A. Kobakhidze, M. Talia and L. Wu, Probing the MSSM explanation of the muon g − 2 anomaly in dark matter experiments and at a 100 TeV pp collider, Phys. Rev. D 95 (2017) 055023 [arXiv:1608.03641] [INSPIRE].
G. Bélanger, J. Da Silva and H.M. Tran, Dark matter in U(1) extensions of the MSSM with gauge kinetic mixing, Phys. Rev. D 95 (2017) 115017 [arXiv:1703.03275] [INSPIRE].
T. Fukuyama, N. Okada and H.M. Tran, Sparticle spectroscopy of the minimal SO(10) model, Phys. Lett. B 767 (2017) 295 [arXiv:1611.08341] [INSPIRE].
A. Choudhury, S. Rao and L. Roszkowski, Impact of LHC data on muon g − 2 solutions in a vectorlike extension of the constrained MSSM, Phys. Rev. D 96 (2017) 075046 [arXiv:1708.05675] [INSPIRE].
K. Hagiwara, K. Ma and S. Mukhopadhyay, Closing in on the chargino contribution to the muon g − 2 in the MSSM: current LHC constraints, Phys. Rev. D 97 (2018) 055035 [arXiv:1706.09313] [INSPIRE].
M. Endo, K. Hamaguchi, S. Iwamoto and T. Kitahara, Muon g − 2 vs LHC Run 2 in supersymmetric models, JHEP 04 (2020) 165 [arXiv:2001.11025] [INSPIRE].
M. Chakraborti, S. Heinemeyer and I. Saha, Improved (g − 2)μ measurements and supersymmetry, Eur. Phys. J. C 80 (2020) 984 [arXiv:2006.15157] [INSPIRE].
S.-I. Horigome, T. Katayose, S. Matsumoto and I. Saha, Leptophilic fermion WIMP — Role of future lepton colliders, arXiv:2102.08645 [INSPIRE].
W. Yin and N. Yokozaki, Splitting mass spectra and muon g − 2 in Higgs-anomaly mediation, Phys. Lett. B 762 (2016) 72 [arXiv:1607.05705] [INSPIRE].
B. Zhu, R. Ding and T. Li, Higgs mass and muon anomalous magnetic moment in the MSSM with gauge-gravity hybrid mediation, Phys. Rev. D 96 (2017) 035029 [arXiv:1610.09840] [INSPIRE].
M. Hussain and R. Khalid, Understanding the muon anomalous magnetic moment in light of a flavor symmetry-based minimal supersymmetric standard model, PTEP 2018 (2018) 083B06 [arXiv:1704.04085] [INSPIRE].
X. Ning and F. Wang, Solving the muon g − 2 anomaly within the NMSSM from generalized deflected AMSB, JHEP 08 (2017) 089 [arXiv:1704.05079] [INSPIRE].
M. Frank and O. Özdal, Exploring the supersymmetric U(1)B−L × U(1)R model with dark matter, muon g − 2 and Z′ mass limits, Phys. Rev. D 97 (2018) 015012 [arXiv:1709.04012] [INSPIRE].
E. Bagnaschi et al., Likelihood analysis of the pMSSM11 in light of LHC 13 TeV data, Eur. Phys. J. C 78 (2018) 256 [arXiv:1710.11091] [INSPIRE].
C. Li, B. Zhu and T. Li, Naturalness, dark matter, and the muon anomalous magnetic moment in supersymmetric extensions of the standard model with a pseudo-Dirac gluino, Nucl. Phys. B 927 (2018) 255 [arXiv:1704.05584] [INSPIRE].
G. Pozzo and Y. Zhang, Constraining resonant dark matter with combined LHC electroweakino searches, Phys. Lett. B 789 (2019) 582 [arXiv:1807.01476] [INSPIRE].
Z. Altın, O. Özdal and C.S. Un, Muon g − 2 in an alternative quasi-Yukawa unification with a less fine-tuned seesaw mechanism, Phys. Rev. D 97 (2018) 055007 [arXiv:1703.00229] [INSPIRE].
M. Chakraborti, U. Chattopadhyay and S. Poddar, How light a higgsino or a wino dark matter can become in a compressed scenario of MSSM, JHEP 09 (2017) 064 [arXiv:1702.03954] [INSPIRE].
T.T. Yanagida and N. Yokozaki, Muon g − 2 in MSSM gauge mediation revisited, Phys. Lett. B 772 (2017) 409 [arXiv:1704.00711] [INSPIRE].
A. Choudhury, L. Darmé, L. Roszkowski, E.M. Sessolo and S. Trojanowski, Muon g − 2 and related phenomenology in constrained vector-like extensions of the MSSM, JHEP 05 (2017) 072 [arXiv:1701.08778] [INSPIRE].
M. Endo, K. Hamaguchi, S. Iwamoto and K. Yanagi, Probing minimal SUSY scenarios in the light of muon g − 2 and dark matter, JHEP 06 (2017) 031 [arXiv:1704.05287] [INSPIRE].
K. Wang, F. Wang, J. Zhu and Q. Jie, The semi-constrained NMSSM in light of muon g − 2, LHC, and dark matter constraints, Chin. Phys. C 42 (2018) 103109 [arXiv:1811.04435] [INSPIRE].
G. Bhattacharyya, T.T. Yanagida and N. Yokozaki, An extended gauge mediation for muon (g − 2) explanation, Phys. Lett. B 784 (2018) 118 [arXiv:1805.01607] [INSPIRE].
P. Cox, C. Han and T.T. Yanagida, Muon g − 2 and dark matter in the minimal supersymmetric standard model, Phys. Rev. D 98 (2018) 055015 [arXiv:1805.02802] [INSPIRE].
P. Cox, C. Han, T.T. Yanagida and N. Yokozaki, Gaugino mediation scenarios for muon g − 2 and dark matter, JHEP 08 (2019) 097 [arXiv:1811.12699] [INSPIRE].
J.-L. Yang, T.-F. Feng, Y.-L. Yan, W. Li, S.-M. Zhao and H.-B. Zhang, Lepton-flavor violation and two loop electroweak corrections to (g − 2)μ in the B-L symmetric SSM, Phys. Rev. D 99 (2019) 015002 [arXiv:1812.03860] [INSPIRE].
H.M. Tran and H.T. Nguyen, GUT-inspired MSSM in light of muon g − 2 and LHC results at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 99 (2019) 035040 [arXiv:1812.11757] [INSPIRE].
F. Wang, K. Wang, J.M. Yang and J. Zhu, Solving the muon g − 2 anomaly in CMSSM extension with non-universal gaugino masses, JHEP 12 (2018) 041 [arXiv:1808.10851] [INSPIRE].
M. Abdughani, K.-I. Hikasa, L. Wu, J.M. Yang and J. Zhao, Testing electroweak SUSY for muon g − 2 and dark matter at the LHC and beyond, JHEP 11 (2019) 095 [arXiv:1909.07792] [INSPIRE].
W. Kotlarski, D. Stöckinger and H. Stöckinger-Kim, Low-energy lepton physics in the MRSSM: (g − 2)μ, μ → eγ and μ → e conversion, JHEP 08 (2019) 082 [arXiv:1902.06650] [INSPIRE].
X.-X. Dong, S.-M. Zhao, H.-B. Zhang and T.-F. Feng, The two-loop corrections to lepton MDMs and EDMs in the EBLMSSM, J. Phys. G 47 (2020) 045002 [arXiv:1901.07701] [INSPIRE].
M. Ibe, M. Suzuki, T.T. Yanagida and N. Yokozaki, Muon g − 2 in split-family SUSY in light of LHC Run II, Eur. Phys. J. C 79 (2019) 688 [arXiv:1903.12433] [INSPIRE].
J.-L. Yang, T.-F. Feng and H.-B. Zhang, Electron and muon (g − 2) in the B-LSSM, J. Phys. G 47 (2020) 055004 [arXiv:2003.09781] [INSPIRE].
T.T. Yanagida, W. Yin and N. Yokozaki, Muon g − 2 in Higgs-anomaly mediation, JHEP 06 (2020) 154 [arXiv:2001.02672] [INSPIRE].
C. Han, M.L. López-Ibáñez, A. Melis, O. Vives, L. Wu and J.M. Yang, LFV and (g − 2) in non-universal SUSY models with light higgsinos, JHEP 05 (2020) 102 [arXiv:2003.06187] [INSPIRE].
J. Cao, J. Lian, L. Meng, Y. Yue and P. Zhu, Anomalous muon magnetic moment in the inverse seesaw extended next-to-minimal supersymmetric standard model, Phys. Rev. D 101 (2020) 095009 [arXiv:1912.10225] [INSPIRE].
M. Yamaguchi and W. Yin, A novel approach to finely tuned supersymmetric standard models: The case of the non-universal Higgs mass model, PTEP 2018 (2018) 023B06 [arXiv:1606.04953] [INSPIRE].
T.T. Yanagida, W. Yin and N. Yokozaki, Flavor-safe light squarks in Higgs-anomaly mediation, JHEP 04 (2018) 012 [arXiv:1801.05785] [INSPIRE].
Y. Shimizu and W. Yin, Natural split mechanism for sfermions: N = 2 supersymmetry in phenomenology, Phys. Lett. B 754 (2016) 118 [arXiv:1509.04933] [INSPIRE].
W. Yin, Fixed point and anomaly mediation in partially N = 2 supersymmetric standard models, Chin. Phys. C 42 (2018) 013104 [arXiv:1609.03527] [INSPIRE].
L.-H. Su, S.-M. Zhao, X.-X. Dong, D.-D. Cui, T.-F. Feng and H.-B. Zhang, The two-loop contributions to muon MDM in U(1)X SSM, Eur. Phys. J. C 81 (2021) 433 [arXiv:2012.04824] [INSPIRE].
R.S. Hundi, S. Roy and S. SenGupta, Muon (g − 2) from the bulk neutrino field in a warped extra dimensional model, Phys. Rev. D 86 (2012) 036014 [arXiv:1206.5137] [INSPIRE].
E. Megias, M. Quirós and L. Salas, gμ − 2 from vector-like leptons in warped space, JHEP 05 (2017) 016 [arXiv:1701.05072] [INSPIRE].
A. Doff and C. Siqueira, Composite Higgs models, technicolor and the muon anomalous magnetic moment, Phys. Lett. B 754 (2016) 294 [arXiv:1512.03256] [INSPIRE].
D.K. Hong and D.H. Kim, Composite (pseudo) scalar contributions to muon g − 2, Phys. Lett. B 758 (2016) 370 [arXiv:1602.06628] [INSPIRE].
A. Broggio, E.J. Chun, M. Passera, K.M. Patel and S.K. Vempati, Limiting two-Higgs-doublet models, JHEP 11 (2014) 058 [arXiv:1409.3199] [INSPIRE].
T. Han, S.K. Kang and J. Sayre, Muon g − 2 in the aligned two Higgs doublet model, JHEP 02 (2016) 097 [arXiv:1511.05162] [INSPIRE].
L. Wang and X.-F. Han, A light pseudoscalar of 2HDM confronted with muon g-2 and experimental constraints, JHEP 05 (2015) 039 [arXiv:1412.4874] [INSPIRE].
V. Ilisie, New Barr-Zee contributions to (g − 2)μ in two-Higgs-doublet models, JHEP 04 (2015) 077 [arXiv:1502.04199] [INSPIRE].
T. Abe, R. Sato and K. Yagyu, Lepton-specific two Higgs doublet model as a solution of muon g − 2 anomaly, JHEP 07 (2015) 064 [arXiv:1504.07059] [INSPIRE].
E.J. Chun, Z. Kang, M. Takeuchi and Y.-L.S. Tsai, LHC τ-rich tests of lepton-specific 2HDM for (g − 2)μ, JHEP 11 (2015) 099 [arXiv:1507.08067] [INSPIRE].
L. Wang, S. Yang and X.-F. Han, h → μτ and muon g − 2 in the alignment limit of two-Higgs-doublet model, Nucl. Phys. B 919 (2017) 123 [arXiv:1606.04408] [INSPIRE].
E.J. Chun and J. Kim, Leptonic precision test of leptophilic two-Higgs-doublet model, JHEP 07 (2016) 110 [arXiv:1605.06298] [INSPIRE].
T. Abe, R. Sato and K. Yagyu, Muon specific two-Higgs-doublet model, JHEP 07 (2017) 012 [arXiv:1705.01469] [INSPIRE].
A. Cherchiglia, P. Kneschke, D. Stöckinger and H. Stöckinger-Kim, The muon magnetic moment in the 2HDM: complete two-loop result, JHEP 01 (2017) 007 [arXiv:1607.06292] [INSPIRE].
A. Cherchiglia, D. Stöckinger and H. Stöckinger-Kim, Muon g − 2 in the 2HDM: maximum results and detailed phenomenology, Phys. Rev. D 98 (2018) 035001 [arXiv:1711.11567] [INSPIRE].
L. Wang, J.M. Yang, M. Zhang and Y. Zhang, Revisiting lepton-specific 2HDM in light of muon g − 2 anomaly, Phys. Lett. B 788 (2019) 519 [arXiv:1809.05857] [INSPIRE].
X.-F. Han, T. Li, L. Wang and Y. Zhang, Simple interpretations of lepton anomalies in the lepton-specific inert two-Higgs-doublet model, Phys. Rev. D 99 (2019) 095034 [arXiv:1812.02449] [INSPIRE].
E.J. Chun, J. Kim and T. Mondal, Electron EDM and muon anomalous magnetic moment in two-Higgs-doublet models, JHEP 12 (2019) 068 [arXiv:1906.00612] [INSPIRE].
S. Iguro, Y. Omura and M. Takeuchi, Testing the 2HDM explanation of the muon g − 2 anomaly at the LHC, JHEP 11 (2019) 130 [arXiv:1907.09845] [INSPIRE].
L. Wang and Y. Zhang, μ-τ-philic Higgs doublet model confronted with the muon g − 2, τ decays, and LHC data, Phys. Rev. D 100 (2019) 095005 [arXiv:1908.03755] [INSPIRE].
D. Sabatta, A.S. Cornell, A. Goyal, M. Kumar, B. Mellado and X. Ruan, Connecting muon anomalous magnetic moment and multi-lepton anomalies at LHC, Chin. Phys. C 44 (2020) 063103 [arXiv:1909.03969] [INSPIRE].
S. Jana, V.P.K. and S. Saad, Resolving electron and muon g − 2 within the 2HDM, Phys. Rev. D 101 (2020) 115037 [arXiv:2003.03386] [INSPIRE].
F.J. Botella, F. Cornet-Gomez and M. Nebot, Electron and muon g − 2 anomalies in general flavour conserving two Higgs doublets models, Phys. Rev. D 102 (2020) 035023 [arXiv:2006.01934] [INSPIRE].
L. Delle Rose, S. Khalil and S. Moretti, Explaining electron and muon g − 2 anomalies in an aligned 2-Higgs doublet model with right-handed neutrinos, Phys. Lett. B 816 (2021) 136216 [arXiv:2012.06911] [INSPIRE].
S.-P. Li, X.-Q. Li, Y.-Y. Li, Y.-D. Yang and X. Zhang, Power-aligned 2HDM: a correlative perspective on (g − 2)e,μ, JHEP 01 (2021) 034 [arXiv:2010.02799] [INSPIRE].
N. Ghosh and J. Lahiri, Generalized 2HDM with wrong-sign lepton Yukawa coupling, in light of gμ − 2 and lepton flavor violation at the future LHC, arXiv:2103.10632 [INSPIRE].
T. Mondal and H. Okada, Inverse seesaw and (g − 2) anomalies in B − L extended two Higgs doublet model, arXiv:2103.13149 [INSPIRE].
D. Das, C. Hati, G. Kumar and N. Mahajan, Towards a unified explanation of \( {R}_{D^{\left(\ast \right)}} \), RK and (g − 2)μ anomalies in a left-right model with leptoquarks, Phys. Rev. D 94 (2016) 055034 [arXiv:1605.06313] [INSPIRE].
E. Coluccio Leskow, G. D’Ambrosio, A. Crivellin and D. Müller, (g − 2)μ, lepton flavor violation, and Z decays with leptoquarks: Correlations and future prospects, Phys. Rev. D 95 (2017) 055018 [arXiv:1612.06858] [INSPIRE].
K. Kowalska, E.M. Sessolo and Y. Yamamoto, Constraints on charmphilic solutions to the muon g − 2 with leptoquarks, Phys. Rev. D 99 (2019) 055007 [arXiv:1812.06851] [INSPIRE].
I. Doršner, S. Fajfer and O. Sumensari, Muon g − 2 and scalar leptoquark mixing, JHEP 06 (2020) 089 [arXiv:1910.03877] [INSPIRE].
A. Crivellin, D. Mueller and F. Saturnino, Correlating h → μ+μ− to the anomalous magnetic moment of the muon via leptoquarks, Phys. Rev. Lett. 127 (2021) 021801 [arXiv:2008.02643] [INSPIRE].
V. Gherardi, D. Marzocca and E. Venturini, Low-energy phenomenology of scalar leptoquarks at one-loop accuracy, JHEP 01 (2021) 138 [arXiv:2008.09548] [INSPIRE].
K.S. Babu, P.S.B. Dev, S. Jana and A. Thapa, Unified framework for B-anomalies, muon g − 2 and neutrino masses, JHEP 03 (2021) 179 [arXiv:2009.01771] [INSPIRE].
A. Crivellin, C. Greub, D. Müller and F. Saturnino, Scalar leptoquarks in leptonic processes, JHEP 02 (2021) 182 [arXiv:2010.06593] [INSPIRE].
J. Heeck and W. Rodejohann, Gauged Lμ–Lτ symmetry at the electroweak Scale, Phys. Rev. D 84 (2011) 075007 [arXiv:1107.5238] [INSPIRE].
W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Neutrino trident production: a powerful probe of new physics with neutrino beams, Phys. Rev. Lett. 113 (2014) 091801 [arXiv:1406.2332] [INSPIRE].
W. Altmannshofer, M. Carena and A. Crivellin, Lμ–Lτ theory of Higgs flavor violation and (g − 2)μ, Phys. Rev. D 94 (2016) 095026 [arXiv:1604.08221] [INSPIRE].
G. Bélanger, C. Delaunay and S. Westhoff, A dark matter relic from muon anomalies, Phys. Rev. D 92 (2015) 055021 [arXiv:1507.06660] [INSPIRE].
W. Altmannshofer, C.-Y. Chen, P.S. Bhupal Dev and A. Soni, Lepton flavor violating Z′ explanation of the muon anomalous magnetic moment, Phys. Lett. B 762 (2016) 389 [arXiv:1607.06832] [INSPIRE].
G.-y. Huang, F.S. Queiroz and W. Rodejohann, Gauged Lμ–Lτ at a muon collider, Phys. Rev. D 103 (2021) 095005 [arXiv:2101.04956] [INSPIRE].
S.N. Gninenko, N.V. Krasnikov and V.A. Matveev, Muon g − 2 and searches for a new leptophobic sub-GeV dark boson in a missing-energy experiment at CERN, Phys. Rev. D 91 (2015) 095015 [arXiv:1412.1400] [INSPIRE].
T. Araki, F. Kaneko, T. Ota, J. Sato and T. Shimomura, MeV scale leptonic force for cosmic neutrino spectrum and muon anomalous magnetic moment, Phys. Rev. D 93 (2016) 013014 [arXiv:1508.07471] [INSPIRE].
A. Biswas, S. Choubey and S. Khan, FIMP and muon (g − 2) in a \( \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} \) model, JHEP 02 (2017) 123 [arXiv:1612.03067] [INSPIRE].
A. Kamada, K. Kaneta, K. Yanagi and H.-B. Yu, Self-interacting dark matter and muon g − 2 in a gauged \( \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} \) model, JHEP 06 (2018) 117 [arXiv:1805.00651] [INSPIRE].
S.N. Gninenko and N.V. Krasnikov, Probing the muon gμ − 2 anomaly, Lμ–Lτ gauge boson and dark matter in dark photon experiments, Phys. Lett. B 783 (2018) 24 [arXiv:1801.10448] [INSPIRE].
S. Patra, S. Rao, N. Sahoo and N. Sahu, Gauged \( \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} \) model in light of muon g − 2 anomaly, neutrino mass and dark matter phenomenology, Nucl. Phys. B 917 (2017) 317 [arXiv:1607.04046] [INSPIRE].
D.W.P.d. Amaral, D.G. Cerdeno, P. Foldenauer and E. Reid, Solar neutrino probes of the muon anomalous magnetic moment in the gauged \( \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} \), JHEP 12 (2020) 155 [arXiv:2006.11225] [INSPIRE].
A. Bodas, R. Coy and S.J.D. King, Solving the electron and muon g − 2 anomalies in Z′ models, arXiv:2102.07781 [INSPIRE].
Y. Daikoku and H. Okada, Lepton anomalous magnetic moments in an S4 flavor-symmetric extra U(1) model, arXiv:2011.10374 [INSPIRE].
H. Davoudiasl, H.-S. Lee and W.J. Marciano, Muon anomaly and dark parity violation, Phys. Rev. Lett. 109 (2012) 031802 [arXiv:1205.2709] [INSPIRE].
H. Davoudiasl, H.-S. Lee and W.J. Marciano, Dark side of Higgs diphoton decays and muon g − 2, Phys. Rev. D 86 (2012) 095009 [arXiv:1208.2973] [INSPIRE].
H. Davoudiasl, H.-S. Lee and W.J. Marciano, Muon g − 2, rare kaon decays, and parity violation from dark bosons, Phys. Rev. D 89 (2014) 095006 [arXiv:1402.3620] [INSPIRE].
H.-S. Lee, Muon g − 2 anomaly and dark leptonic gauge boson, Phys. Rev. D 90 (2014) 091702 [arXiv:1408.4256] [INSPIRE].
G. Mohlabeng, Revisiting the dark photon explanation of the muon anomalous magnetic moment, Phys. Rev. D 99 (2019) 115001 [arXiv:1902.05075] [INSPIRE].
K. Kannike, M. Raidal, D.M. Straub and A. Strumia, Anthropic solution to the magnetic muon anomaly: the charged see-saw, JHEP 02 (2012) 106 [Erratum ibid. 10 (2012) 136] [arXiv:1111.2551] [INSPIRE].
R. Dermisek and A. Raval, Explanation of the muon g − 2 anomaly with vectorlike leptons and its implications for Higgs decays, Phys. Rev. D 88 (2013) 013017 [arXiv:1305.3522] [INSPIRE].
S. Raby and A. Trautner, Vectorlike chiral fourth family to explain muon anomalies, Phys. Rev. D 97 (2018) 095006 [arXiv:1712.09360] [INSPIRE].
Z. Poh and S. Raby, Vectorlike leptons: muon g − 2 anomaly, lepton flavor violation, Higgs boson decays, and lepton nonuniversality, Phys. Rev. D 96 (2017) 015032 [arXiv:1705.07007] [INSPIRE].
J. Kawamura, S. Okawa and Y. Omura, Current status and muon g − 2 explanation of lepton portal dark matter, JHEP 08 (2020) 042 [arXiv:2002.12534] [INSPIRE].
M. Frank and I. Saha, Muon anomalous magnetic moment in two-Higgs-doublet models with vectorlike leptons, Phys. Rev. D 102 (2020) 115034 [arXiv:2008.11909] [INSPIRE].
A.S. De Jesus, S. Kovalenko, F.S. Queiroz, C. Siqueira and K. Sinha, Vectorlike leptons and inert scalar triplet: Lepton flavor violation, g − 2, and collider searches, Phys. Rev. D 102 (2020) 035004 [arXiv:2004.01200] [INSPIRE].
M. Endo and S. Mishima, Muon g − 2 and CKM unitarity in extra lepton models, JHEP 08 (2020) 004 [arXiv:2005.03933] [INSPIRE].
D. Huang, A.P. Morais and R. Santos, Anomalies in B-meson decays and the muon g − 2 from dark loops, Phys. Rev. D 102 (2020) 075009 [arXiv:2007.05082] [INSPIRE].
E.J. Chun and T. Mondal, Explaining g − 2 anomalies in two Higgs doublet model with vector-like leptons, JHEP 11 (2020) 077 [arXiv:2009.08314] [INSPIRE].
R. Dermisek, K. Hermanek, N. McGinnis and N. McGinnis, Highly enhanced contributions of heavy Higgs bosons and new leptons to muon g − 2 and prospects at future colliders, Phys. Rev. Lett. 126 (2021) 191801 [arXiv:2011.11812] [INSPIRE].
R. Dermisek, K. Hermanek and N. McGinnis, Muon g − 2 in two Higgs doublet models with vectorlike leptons, arXiv:2103.05645 [INSPIRE].
C.-Y. Chen, H. Davoudiasl, W.J. Marciano and C. Zhang, Implications of a light “dark Higgs” solution to the gμ − 2 discrepancy, Phys. Rev. D 93 (2016) 035006 [arXiv:1511.04715] [INSPIRE].
W.J. Marciano, A. Masiero, P. Paradisi and M. Passera, Contributions of axionlike particles to lepton dipole moments, Phys. Rev. D 94 (2016) 115033 [arXiv:1607.01022] [INSPIRE].
M. Bauer, M. Neubert and A. Thamm, LHC as an axion factory: probing an axion explanation for (g − 2)μ with exotic Higgs decays, Phys. Rev. Lett. 119 (2017) 031802 [arXiv:1704.08207] [INSPIRE].
J. Liu, C.E.M. Wagner and X.-P. Wang, A light complex scalar for the electron and muon anomalous magnetic moments, JHEP 03 (2019) 008 [arXiv:1810.11028] [INSPIRE].
M. Bauer, M. Neubert, S. Renner, M. Schnubel and A. Thamm, Axionlike particles, lepton-flavor violation, and a new explanation of aμ and ae, Phys. Rev. Lett. 124 (2020) 211803 [arXiv:1908.00008] [INSPIRE].
C. Cornella, P. Paradisi and O. Sumensari, Hunting for ALPs with lepton flavor violation, JHEP 01 (2020) 158 [arXiv:1911.06279] [INSPIRE].
W. Abdallah, R. Gandhi and S. Roy, Understanding the MiniBooNE and the muon and electron g − 2 anomalies with a light Z′ and a second Higgs doublet, JHEP 12 (2020) 188 [arXiv:2006.01948] [INSPIRE].
P. Escribano and A. Vicente, Ultralight scalars in leptonic observables, JHEP 03 (2021) 240 [arXiv:2008.01099] [INSPIRE].
D. Buttazzo, P. Panci, D. Teresi and R. Ziegler, Xenon1T excess from electron recoils of non-relativistic Dark Matter, Phys. Lett. B 817 (2021) 136310 [arXiv:2011.08919] [INSPIRE].
R.S. Hundi, Constraints from neutrino masses and muon (g − 2) in the bilinear R-parity violating supersymmetric model, Phys. Rev. D 83 (2011) 115019 [arXiv:1101.2810] [INSPIRE].
J.-H. Huh and B. Kyae, \( \mathrm{U}{(1)}_{B_1+{B}_2-2{L}_1} \) mediation for the natural SUSY and the anomalous muon g − 2, Phys. Lett. B 726 (2013) 729 [arXiv:1306.1321] [INSPIRE].
N. Okada, S. Raza and Q. Shafi, Particle spectroscopy of supersymmetric SU(5) in light of 125 GeV Higgs and muon g − 2 data, Phys. Rev. D 90 (2014) 015020 [arXiv:1307.0461] [INSPIRE].
C. Kelso, P.R.D. Pinheiro, F.S. Queiroz and W. Shepherd, The muon anomalous magnetic moment in the reduced minimal 3-3-1 model, Eur. Phys. J. C 74 (2014) 2808 [arXiv:1312.0051] [INSPIRE].
K.S. Babu, I. Gogoladze, Q. Shafi and C.S. Ün, Muon g − 2, 125 GeV Higgs boson, and neutralino dark matter in a flavor symmetry-based MSSM, Phys. Rev. D 90 (2014) 116002 [arXiv:1406.6965] [INSPIRE].
D. Cogollo, Muon anomalous magnetic moment in a SU(4) ⊗ U(1)N model, Int. J. Mod. Phys. A 30 (2015) 1550038 [arXiv:1409.8115] [INSPIRE].
M. Adeel Ajaib, I. Gogoladze and Q. Shafi, GUT-inspired supersymmetric model for h → γγ and the muon g − 2, Phys. Rev. D 91 (2015) 095005 [arXiv:1501.04125] [INSPIRE].
D. T. Binh, D. T. Huong, L. T. Hue and H. N. Long, Anomalous magnetic moment of muon in economical 3-3-1 model, Commun. Phys. 25 (2015) 29.
A. Hektor, K. Kannike and L. Marzola, Muon g − 2 and galactic centre γ-ray excess in a scalar extension of the 2HDM type-X, JCAP 10 (2015) 025 [arXiv:1507.05096] [INSPIRE].
D. Cogollo, Exotic leptons: collider and muon magnetic moment constraints, Int. J. Mod. Phys. A 30 (2015) 1550187 [arXiv:1508.01492] [INSPIRE].
B. Allanach, F.S. Queiroz, A. Strumia and S. Sun, Z′ models for the LHCb and g − 2 muon anomalies, Phys. Rev. D 93 (2016) 055045 [Erratum ibid. 95 (2017) 119902] [arXiv:1511.07447] [INSPIRE].
J. Chakrabortty, P. Ghosh, S. Mondal and T. Srivastava, Reconciling (g − 2)μ and charged lepton flavor violating processes through a doubly charged scalar, Phys. Rev. D 93 (2016) 115004 [arXiv:1512.03581] [INSPIRE].
E. Jin Chun, Solving the muon anomaly in two Higgs doublet models, Nuovo Cim. C 38 (2016) 136 [INSPIRE].
G. Bélanger and C. Delaunay, A dark sector for gμ − 2, RK and a diphoton resonance, Phys. Rev. D 94 (2016) 075019 [arXiv:1603.03333] [INSPIRE].
M. Nishida and K. Yoshioka, Higgs boson mass and muon g − 2 with strongly coupled vector-like generations, Phys. Rev. D 94 (2016) 095022 [arXiv:1605.06675] [INSPIRE].
D.K. Hong, D.H. Kim and C.S. Shin, Clockwork graviton contributions to muon g − 2, Phys. Rev. D 97 (2018) 035014 [arXiv:1706.09376] [INSPIRE].
A. Crivellin, M. Hoferichter and P. Schmidt-Wellenburg, Combined explanations of (g − 2)μ,e and implications for a large muon EDM, Phys. Rev. D 98 (2018) 113002 [arXiv:1807.11484] [INSPIRE].
S.-P. Li, X.-Q. Li and Y.-D. Yang, Muon g − 2 in a U(1)-symmetric two-Higgs-doublet model, Phys. Rev. D 99 (2019) 035010 [arXiv:1808.02424] [INSPIRE].
G.-L. Liu and Q.-G. Zeng, Muon g − 2 anomaly confronted with the Higgs global data in the left-right twin Higgs models, Eur. Phys. J. C 79 (2019) 612 [arXiv:1811.04777] [INSPIRE].
C.-H. Chen and T. Nomura, Influence of an inert charged Higgs boson on the muon g − 2 and radiative neutrino masses in a scotogenic model, Phys. Rev. D 100 (2019) 015024 [arXiv:1903.03380] [INSPIRE].
M. Badziak and K. Sakurai, Explanation of electron and muon g − 2 anomalies in the MSSM, JHEP 10 (2019) 024 [arXiv:1908.03607] [INSPIRE].
A. Datta, J.L. Feng, S. Kamali and J. Kumar, Resolving the (g − 2)μ and B anomalies with leptoquarks and a dark Higgs boson, Phys. Rev. D 101 (2020) 035010 [arXiv:1908.08625] [INSPIRE].
M. Endo and W. Yin, Explaining electron and muon g − 2 anomaly in SUSY without lepton-flavor mixings, JHEP 08 (2019) 122 [arXiv:1906.08768] [INSPIRE].
A.E. Cárcamo Hernández, S.F. King, H. Lee and S.J. Rowley, Is it possible to explain the muon and electron g − 2 in a Z′ model?, Phys. Rev. D 101 (2020) 115016 [arXiv:1910.10734] [INSPIRE].
C.-X. Liu, H.-B. Zhang, J.-L. Yang, S.-M. Zhao, Y.-B. Liu and T.-F. Feng, Higgs boson decay h → Zγ and muon magnetic dipole moment in the μνSSM, JHEP 04 (2020) 002 [arXiv:2002.04370] [INSPIRE].
L. Calibbi, M.L. López-Ibáñez, A. Melis and O. Vives, Muon and electron g − 2 and lepton masses in flavor models, JHEP 06 (2020) 087 [arXiv:2003.06633] [INSPIRE].
C.-H. Chen and T. Nomura, Electron and muon g − 2, radiative neutrino mass, and ℓ′ → ℓγ in a U(1)e − μ model, Nucl. Phys. B 964 (2021) 115314 [arXiv:2003.07638] [INSPIRE].
C.-K. Chua, Data-driven study of the implications of anomalous magnetic moments and lepton flavor violating processes of e, μ and τ, Phys. Rev. D 102 (2020) 055022 [arXiv:2004.11031] [INSPIRE].
S. Saad, Combined explanations of (g − 2)μ, \( {R}_{D^{\left(\ast \right)}} \), \( {R}_{K^{\left(\ast \right)}} \) anomalies in a two-loop radiative neutrino mass model, Phys. Rev. D 102 (2020) 015019 [arXiv:2005.04352] [INSPIRE].
J.T. Acuña, M. Fabbrichesi and P. Ullio, Phenomenological consequences of an interacting multicomponent dark sector, Phys. Rev. D 102 (2020) 083009 [arXiv:2005.04146] [INSPIRE].
M. Frank, Y. Hiçyılmaz, S. Moretti and O. Özdal, Leptophobic Z′ bosons in the secluded UMSSM, Phys. Rev. D 102 (2020) 115025 [arXiv:2005.08472] [INSPIRE].
B. Dutta, S. Ghosh and T. Li, Explaining (g − 2)μ,e, the KOTO anomaly and the MiniBooNE excess in an extended Higgs model with sterile neutrinos, Phys. Rev. D 102 (2020) 055017 [arXiv:2006.01319] [INSPIRE].
K.-F. Chen, C.-W. Chiang and K. Yagyu, An explanation for the muon and electron g − 2 anomalies and dark matter, JHEP 09 (2020) 119 [arXiv:2006.07929] [INSPIRE].
X. Liu, Y. Li, T. Li and B. Zhu, The light sgoldstino phenomenology: explanations for the muon (g − 2) deviation and KOTO anomaly, JHEP 10 (2020) 197 [arXiv:2006.08869] [INSPIRE].
I. Doršner, S. Fajfer and S. Saad, μ → eγ selecting scalar leptoquark solutions for the (g − 2)e,μ puzzles, Phys. Rev. D 102 (2020) 075007 [arXiv:2006.11624] [INSPIRE].
R. Nagai and N. Yokozaki, Lepton flavor violations in SUSY models for muon g − 2 with right-handed neutrinos, JHEP 01 (2021) 099 [arXiv:2007.00943] [INSPIRE].
C. Arbeláez, R. Cepedello, R.M. Fonseca and M. Hirsch, (g − 2) anomalies and neutrino mass, Phys. Rev. D 102 (2020) 075005 [arXiv:2007.11007] [INSPIRE].
A. Abdullahi, M. Hostert and S. Pascoli, A dark seesaw solution to low energy anomalies: MiniBooNE, the muon (g − 2), and BaBar, Phys. Lett. B 820 (2021) 136531 [arXiv:2007.11813] [INSPIRE].
S. Jana, P.K. Vishnu, W. Rodejohann and S. Saad, Dark matter assisted lepton anomalous magnetic moments and neutrino masses, Phys. Rev. D 102 (2020) 075003 [arXiv:2008.02377] [INSPIRE].
N. Chakrabarty, Doubly charged scalars and vector-like leptons confronting the muon g − 2 anomaly and Higgs vacuum stability, arXiv:2010.05215 [INSPIRE].
H. Banerjee, B. Dutta and S. Roy, Supersymmetric gauged \( \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} \) model for electron and muon (g − 2) anomaly, JHEP 03 (2021) 211 [arXiv:2011.05083] [INSPIRE].
S.Q. Dinh and H.M. Tran, Muon g − 2 and semileptonic B decays in BDW model with gauge kinetic mixing, arXiv:2011.07182 [INSPIRE].
V.G. Baryshevsky and P.I. Porshnev, Pseudoscalar corrections to spin motion equation, search for electric dipole moment and muon magnetic (g − 2) factor, arXiv:2012.11751 [INSPIRE].
M.J. Ramsey-Musolf and J.C. Vasquez, Left-right symmetry and electric dipole moments. A global analysis, Phys. Lett. B 815 (2021) 136136 [arXiv:2012.02799] [INSPIRE].
N. Chen, B. Wang and C.-Y. Yao, The collider tests of a leptophilic scalar for the anomalous magnetic moments, arXiv:2102.05619 [INSPIRE].
G.-L. Liu, F. Wang and W. Wang, The lepton flavor changing decays and one-loop muon anomalous magnetic moment in the extended mirror twin Higgs models, arXiv:2012.09986 [INSPIRE].
J. Aebischer, W. Dekens, E.E. Jenkins, A.V. Manohar, D. Sengupta and P. Stoffer, Effective field theory interpretation of lepton magnetic and electric dipole moments, arXiv:2102.08954 [INSPIRE].
J. Cao, Y. He, J. Lian, D. Zhang and P. Zhu, Electron and muon anomalous magnetic moments in the inverse seesaw extended NMSSM, arXiv:2102.11355 [INSPIRE].
S. Fajfer, J.F. Kamenik and M. Tammaro, Interplay of new physics effects in (g − 2)ℓ and h → ℓ+ℓ− — lessons from SMEFT, JHEP 06 (2021) 099 [arXiv:2103.10859] [INSPIRE].
W. Yin and W. Yin, Radiative lepton mass and muon g − 2 with suppressed lepton flavor and CP-violations, arXiv:2103.14234 [INSPIRE].
A. Greljo, P. Stangl and A.E. Thomsen, A model of muon anomalies, arXiv:2103.13991 [INSPIRE].
M. Abdullah, B. Dutta, S. Ghosh and T. Li, (g − 2)μ,e and the ANITA anomalous events in a three-loop neutrino mass model, Phys. Rev. D 100 (2019) 115006 [arXiv:1907.08109] [INSPIRE].
M.J. Baker, P. Cox and R.R. Volkas, Radiative muon mass models and (g − 2)μ, JHEP 05 (2021) 174 [arXiv:2103.13401] [INSPIRE].
A. Freitas, J. Lykken, S. Kell and S. Westhoff, Testing the muon g − 2 anomaly at the LHC, JHEP 05 (2014) 145 [Erratum ibid. 09 (2014) 155] [arXiv:1402.7065] [INSPIRE].
L. Calibbi, P. Paradisi and R. Ziegler, Lepton flavor violation in flavored gauge mediation, Eur. Phys. J. C 74 (2014) 3211 [arXiv:1408.0754] [INSPIRE].
F.S. Queiroz and W. Shepherd, New physics contributions to the muon anomalous magnetic moment: a numerical code, Phys. Rev. D 89 (2014) 095024 [arXiv:1403.2309] [INSPIRE].
C. Biggio, M. Bordone, L. Di Luzio and G. Ridolfi, Massive vectors and loop observables: the g − 2 case, JHEP 10 (2016) 002 [arXiv:1607.07621] [INSPIRE].
C. Biggio and M. Bordone, Minimal muon anomalous magnetic moment, JHEP 02 (2015) 099 [arXiv:1411.6799] [INSPIRE].
K. Kowalska and E.M. Sessolo, Expectations for the muon g − 2 in simplified models with dark matter, JHEP 09 (2017) 112 [arXiv:1707.00753] [INSPIRE].
P. Athron, C. Balázs, A. Fowlie and Y. Zhang, Model-independent analysis of the DAMPE excess, JHEP 02 (2018) 121 [arXiv:1711.11376] [INSPIRE].
H. Banerjee, P. Byakti and S. Roy, Supersymmetric gauged \( \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} \) model for neutrinos and the muon (g − 2) anomaly, Phys. Rev. D 98 (2018) 075022 [arXiv:1805.04415] [INSPIRE].
C.-W. Chiang, M. Takeuchi, P.-Y. Tseng and T.T. Yanagida, Muon g − 2 and rare top decays in up-type specific variant axion models, Phys. Rev. D 98 (2018) 095020 [arXiv:1807.00593] [INSPIRE].
L. Calibbi, R. Ziegler and J. Zupan, Minimal models for dark matter and the muon g − 2 anomaly, JHEP 07 (2018) 046 [arXiv:1804.00009] [INSPIRE].
P. Das, M.K. Das and N. Khan, The FIMP-WIMP dark matter and muon g − 2 in the extended singlet scalar model, arXiv:2104.03271 [INSPIRE].
M.A. Buen-Abad, J. Fan, M. Reece and C. Sun, Challenges for an axion explanation of the muon g − 2 measurement, arXiv:2104.03267 [INSPIRE].
F. Wang, L. Wu, Y. Xiao, J.M. Yang and Y. Zhang, GUT-scale constrained SUSY in light of new muon g − 2 measurement, Nucl. Phys. B 970 (2021) 115486 [arXiv:2104.03262] [INSPIRE].
M. Abdughani, Y.-Z. Fan, L. Feng, Y.-L.S. Tsai, L. Wu and Q. Yuan, A common origin of muon g − 2 anomaly, Galaxy Center GeV excess and AMS-02 anti-proton excess in the NMSSM, Sci. Bull. 66 (2021) 2170 [arXiv:2104.03274] [INSPIRE].
C.-H. Chen, C.-W. Chiang and T. Nomura, Muon g − 2 in two-Higgs-doublet model with type-II seesaw mechanism, arXiv:2104.03275 [INSPIRE].
S.-F. Ge, X.-D. Ma and P. Pasquini, Probing the dark axion portal with muon anomalous magnetic moment, arXiv:2104.03276 [INSPIRE].
M. Cadeddu, N. Cargioli, F. Dordei, C. Giunti and E. Picciau, Muon and electron g − 2 and proton and cesium weak charges implications on dark Zd models, Phys. Rev. D 104 (2021) 011701 [arXiv:2104.03280] [INSPIRE].
V. Brdar, S. Jana, J. Kubo and M. Lindner, Semi-secretly interacting axion-like particle as an explanation of Fermilab muon g − 2 measurement, Phys. Lett. B 820 (2021) 136529 [arXiv:2104.03282] [INSPIRE].
J. Cao, J. Lian, Y. Pan, D. Zhang and P. Zhu, Improved (g − 2)μ measurement and singlino dark matter in the general NMSSM, arXiv:2104.03284 [INSPIRE].
M. Chakraborti, S. Heinemeyer and I. Saha, The new “MUON G-2” result and supersymmetry, arXiv:2104.03287 [INSPIRE].
M. Ibe, S. Kobayashi, Y. Nakayama and S. Shirai, Muon g − 2 in gauge mediation without SUSY CP problem, arXiv:2104.03289 [INSPIRE].
P. Cox, C. Han and T.T. Yanagida, Muon g − 2 and co-annihilating dark matter in the MSSM, arXiv:2104.03290 [INSPIRE].
K.S. Babu, S. Jana, M. Lindner and V.P. K, Muon g − 2 anomaly and neutrino magnetic Moments, arXiv:2104.03291 [INSPIRE].
C. Han, Muon g − 2 and CP-violation in MSSM, arXiv:2104.03292 [INSPIRE].
S. Heinemeyer, E. Kpatcha, I. Lara, D.E. López-Fogliani, C. Muñoz and N. Nagata, The new (g − 2)μ result and the μνSSM, arXiv:2104.03294 [INSPIRE].
L. Calibbi, M.L. López-Ibáñez, A. Melis and O. Vives, Implications of the muon g − 2 result on the flavour structure of the lepton mass matrix, arXiv:2104.03296 [INSPIRE].
D.W.P. Amaral, D.G. Cerdeño, A. Cheek and P. Foldenauer, Distinguishing U(1)Lμ −Lτ from \( \mathrm{U}{(1)}_{L_{\mu }} \) as a solution for (g − 2)μ with neutrinos, arXiv:2104.03297 [INSPIRE].
Y. Bai and J. Berger, Muon g − 2 in lepton portal dark matter, arXiv:2104.03301 [INSPIRE].
S. Baum, M. Carena, N.R. Shah and C.E.M. Wagner, The tiny (g − 2) muon wobble from small-μ supersymmetry, arXiv:2104.03302 [INSPIRE].
W. Yin, Muon g − 2 anomaly in anomaly mediation, JHEP 06 (2021) 029 [arXiv:2104.03259] [INSPIRE].
D. Anselmi et al., Fake doublet solution to the muon anomalous magnetic moment, Phys. Rev. D 104 (2021) 035009 [arXiv:2104.03249] [INSPIRE].
T. Nomura and H. Okada, Explanations for anomalies of muon anomalous magnetic dipole moment, b → sμ\( \overline{\mu} \), and radiative neutrino masses in a leptoquark model, Phys. Rev. D 104 (2021) 035042 [arXiv:2104.03248] [INSPIRE].
M. Van Beekveld, W. Beenakker, M. Schutten and J. De Wit, Dark matter, fine-tuning and (g − 2)μ in the pMSSM, arXiv:2104.03245 [INSPIRE].
H.-X. Wang, L. Wang and Y. Zhang, muon g − 2 anomaly and μ-τ-philic Higgs doublet with a light CP-even component, arXiv:2104.03242 [INSPIRE].
Y. Gu, N. Liu, L. Su and D. Wang, Heavy bino and slepton for muon g − 2 anomaly, Nucl. Phys. B 969 (2021) 115481 [arXiv:2104.03239] [INSPIRE].
B. Zhu and X. Liu, Probing the flavor-specific scalar mediator for the muon (g − 2) deviation, the proton radius puzzle and the light dark matter production, arXiv:2104.03238 [INSPIRE].
J.C. Criado, A. Djouadi, N. Koivunen, K. Müürsepp, M. Raidal and H. Veermäe, Confronting spin-3/2 and other new fermions with the muon g − 2 measurement, Phys. Lett. B 820 (2021) 136491 [arXiv:2104.03231] [INSPIRE].
G. Arcadi, L. Calibbi, M. Fedele and F. Mescia, Muon g − 2 and B-anomalies from Dark Matter, Phys. Rev. Lett. 127 (2021) 061802 [arXiv:2104.03228] [INSPIRE].
X.-F. Han, T. Li, H.-X. Wang, L. Wang and Y. Zhang, Lepton-specific inert two-Higgs-doublet model confronted with the new results for muon and electron g-2 anomalies and multi-lepton searches at the LHC, arXiv:2104.03227 [INSPIRE].
S. Iwamoto, T.T. Yanagida and N. Yokozaki, Wino-Higgsino dark matter in the MSSM from the g − 2 anomaly, arXiv:2104.03223 [INSPIRE].
M. Endo, K. Hamaguchi, S. Iwamoto and T. Kitahara, Supersymmetric interpretation of the muon g − 2 anomaly, JHEP 07 (2021) 075 [arXiv:2104.03217] [INSPIRE].
A. Crivellin and M. Hoferichter, Consequences of chirally enhanced explanations of (g − 2)μ for h → μμ and Z → μμ, JHEP 07 (2021) 135 [arXiv:2104.03202] [INSPIRE].
A.E. Cárcamo Hernández, C. Espinoza, J. Carlos Gómez-Izquierdo and M. Mondragón, Fermion masses and mixings, dark matter, leptogenesis and g − 2 muon anomaly in an extended 2HDM with inverse seesaw, arXiv:2104.02730 [INSPIRE].
M. Chakraborti, L. Roszkowski and S. Trojanowski, GUT-constrained supersymmetry and dark matter in light of the new (g − 2)μ determination, JHEP 05 (2021) 252 [arXiv:2104.04458] [INSPIRE].
M. Passera, W.J. Marciano and A. Sirlin, The muon g − 2 and the bounds on the Higgs boson mass, Phys. Rev. D 78 (2008) 013009 [arXiv:0804.1142] [INSPIRE].
A. Crivellin, M. Hoferichter, C.A. Manzari and M. Montull, Hadronic vacuum polarization: (g − 2)μ versus global electroweak fits, Phys. Rev. Lett. 125 (2020) 091801 [arXiv:2003.04886] [INSPIRE].
A. Keshavarzi, W.J. Marciano, M. Passera and A. Sirlin, Muon g − 2 and ∆α connection, Phys. Rev. D 102 (2020) 033002 [arXiv:2006.12666] [INSPIRE].
E. de Rafael, Constraints between ∆αhad(\( {M}_Z^2 \)) and (gμ − 2)HVP, Phys. Rev. D 102 (2020) 056025 [arXiv:2006.13880] [INSPIRE].
B. Malaescu and M. Schott, Impact of correlations between aμ and αQED on the EW fit, Eur. Phys. J. C 81 (2021) 46 [arXiv:2008.08107] [INSPIRE].
Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [INSPIRE].
Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
G.F. Giudice, P. Paradisi and M. Passera, Testing new physics with the electron g − 2, JHEP 11 (2012) 113 [arXiv:1208.6583] [INSPIRE].
J.A. Coarasa Perez, A. Mendez and J. Solà, Higgs triplet effects in purely leptonic processes, Phys. Lett. B 374 (1996) 131 [hep-ph/9511297] [INSPIRE].
J.F. Gunion, J. Grifols, A. Mendez, B. Kayser and F.I. Olness, Higgs bosons in left-right symmetric models, Phys. Rev. D 40 (1989) 1546 [INSPIRE].
W.-C. Chiu, C.-Q. Geng and D. Huang, Correlation between muon g − 2 and μ → eγ, Phys. Rev. D 91 (2015) 013006 [arXiv:1409.4198] [INSPIRE].
C. Kelso, H.N. Long, R. Martinez and F.S. Queiroz, Connection of g − 2μ, electroweak, dark matter, and collider constraints on 331 models, Phys. Rev. D 90 (2014) 113011 [arXiv:1408.6203] [INSPIRE].
CMS collaboration, Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and W, Z, and Higgs bosons in pp collisions at 8 TeV, Eur. Phys. J. C 74 (2014) 3036 [arXiv:1405.7570] [INSPIRE].
A.V. Kuznetsov, N.V. Mikheev and A.V. Serghienko, The third type of fermion mixing in the lepton and quark interactions with leptoquarks, Int. J. Mod. Phys. A 27 (2012) 1250062 [arXiv:1203.0196] [INSPIRE].
D. Hanneke, S. Fogwell and G. Gabrielse, New measurement of the electron magnetic moment and the fine structure constant, Phys. Rev. Lett. 100 (2008) 120801 [arXiv:0801.1134] [INSPIRE].
H. Merkel et al., Search at the Mainz microtron for light massive gauge bosons relevant for the muon g − 2 anomaly, Phys. Rev. Lett. 112 (2014) 221802 [arXiv:1404.5502] [INSPIRE].
BaBar collaboration, Search for a dark photon in e+e− collisions at BaBar, Phys. Rev. Lett. 113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].
NA48/2 collaboration, Search for the dark photon in π0 decays, Phys. Lett. B 746 (2015) 178 [arXiv:1504.00607] [INSPIRE].
S.N. Gninenko, D.V. Kirpichnikov, M.M. Kirsanov and N.V. Krasnikov, Combined search for light dark matter with electron and muon beams at NA64, Phys. Lett. B 796 (2019) 117 [arXiv:1903.07899] [INSPIRE].
M. Escudero, D. Hooper, G. Krnjaic and M. Pierre, Cosmology with a very light Lμ–Lτ gauge boson, JHEP 03 (2019) 071 [arXiv:1901.02010] [INSPIRE].
E.J. Chun and T. Mondal, Searching for a light Higgs boson via the Yukawa process at lepton colliders, Phys. Lett. B 802 (2020) 135190 [arXiv:1909.09515] [INSPIRE].
M. Bauer and M. Neubert, Minimal leptoquark explanation for the \( {R}_{D^{\left(\ast \right)}} \), RK, and (g − 2)μ anomalies, Phys. Rev. Lett. 116 (2016) 141802 [arXiv:1511.01900] [INSPIRE].
O. Popov and G.A. White, One leptoquark to unify them? Neutrino masses and unification in the light of (g − 2)μ, \( {R}_{D^{\left(\ast \right)}} \) and RK anomalies, Nucl. Phys. B 923 (2017) 324 [arXiv:1611.04566] [INSPIRE].
W. Buchmüller, R. Ruckl and D. Wyler, Leptoquarks in lepton-quark collisions, Phys. Lett. B 191 (1987) 442 [Erratum ibid. 448 (1999) 320] [INSPIRE].
I. Bigaran and R.R. Volkas, Getting chirality right: Single scalar leptoquark solutions to the (g − 2)e,μ puzzle, Phys. Rev. D 102 (2020) 075037 [arXiv:2002.12544] [INSPIRE].
S.P. Martin, A supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 18 (1998) 1 [hep-ph/9709356] [INSPIRE].
J.M. Arnold, B. Fornal and M.B. Wise, Phenomenology of scalar leptoquarks, Phys. Rev. D 88 (2013) 035009 [arXiv:1304.6119] [INSPIRE].
F.S. Queiroz, K. Sinha and A. Strumia, Leptoquarks, dark matter, and anomalous LHC events, Phys. Rev. D 91 (2015) 035006 [arXiv:1409.6301] [INSPIRE].
W. Dekens, J. de Vries, M. Jung and K.K. Vos, The phenomenology of electric dipole moments in models of scalar leptoquarks, JHEP 01 (2019) 069 [arXiv:1809.09114] [INSPIRE].
CMS collaboration, Search for leptoquarks coupled to third-generation quarks in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. Lett. 121 (2018) 241802 [arXiv:1809.05558] [INSPIRE].
CMS collaboration, Constraints on models of scalar and vector leptoquarks decaying to a quark and a neutrino at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 98 (2018) 032005 [arXiv:1805.10228] [INSPIRE].
ALEPH et al. collaborations, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
P. Arnan, D. Becirevic, F. Mescia and O. Sumensari, Probing low energy scalar leptoquarks by the leptonic W and Z couplings, JHEP 02 (2019) 109 [arXiv:1901.06315] [INSPIRE].
F. Staub, From superpotential to model files for FeynArts and CalcHep/CompHEP, Comput. Phys. Commun. 181 (2010) 1077 [arXiv:0909.2863] [INSPIRE].
F. Staub, Automatic calculation of supersymmetric renormalization group equations and self energies, Comput. Phys. Commun. 182 (2011) 808 [arXiv:1002.0840] [INSPIRE].
F. Staub, SARAH 3.2: Dirac gauginos, UFO output, and more, Comput. Phys. Commun. 184 (2013) 1792 [arXiv:1207.0906] [INSPIRE].
F. Staub, SARAH 4: a tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].
B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].
B.C. Allanach, P. Athron, L.C. Tunstall, A. Voigt and A.G. Williams, Next-to-minimal SOFTSUSY, Comput. Phys. Commun. 185 (2014) 2322 [Erratum ibid. 250 (2020) 107044] [arXiv:1311.7659] [INSPIRE].
G. Degrassi and G.F. Giudice, QED logarithms in the electroweak corrections to the muon anomalous magnetic moment, Phys. Rev. D 58 (1998) 053007 [hep-ph/9803384] [INSPIRE].
FCC collaboration, HE-LHC: the high-energy Large Hadron Collider: future circular collider conceptual design report volume 4, Eur. Phys. J. ST 228 (2019) 1109 [INSPIRE].
T. Behnke et al., The International Linear Collider technical design report — Volume 1: executive summary, arXiv:1306.6327 [INSPIRE].
M. Aicheler et al., A multi-TeV linear collider based on CLIC technology: CLIC conceptual design report, CERN-2012-007 (2012).
CEPC Study Group collaboration, CEPC conceptual design report. Volume 1: accelerator, arXiv:1809.00285 [INSPIRE].
FCC collaboration, FCC-ee: the lepton collider: Future Circular Collider conceptual design report. Volume 2, Eur. Phys. J. ST 228 (2019) 261 [INSPIRE].
FCC collaboration, FCC-hh: the hadron collider: Future Circular Collider conceptual design report. Volume 3, Eur. Phys. J. ST 228 (2019) 755 [INSPIRE].
A. Crivellin, D. Müller and F. Saturnino, Leptoquarks in oblique corrections and Higgs signal strength: status and prospects, JHEP 11 (2020) 094 [arXiv:2006.10758] [INSPIRE].
I. Doršner and A. Greljo, Leptoquark toolbox for precision collider studies, JHEP 05 (2018) 126 [arXiv:1801.07641] [INSPIRE].
S. Bar-Shalom, J. Cohen, A. Soni and J. Wudka, Phenomenology of TeV-scale scalar Leptoquarks in the EFT, Phys. Rev. D 100 (2019) 055020 [arXiv:1812.03178] [INSPIRE].
G. Hiller, D. Loose and I. Nišandžić, Flavorful leptoquarks at hadron colliders, Phys. Rev. D 97 (2018) 075004 [arXiv:1801.09399] [INSPIRE].
B.C. Allanach, T. Corbett and M. Madigan, Sensitivity of future hadron colliders to leptoquark pair production in the di-muon di-jets channel, Eur. Phys. J. C 80 (2020) 170 [arXiv:1911.04455] [INSPIRE].
W. Altmannshofer, S. Gori, H.H. Patel, S. Profumo and D. Tuckler, Electric dipole moments in a leptoquark scenario for the B-physics anomalies, JHEP 05 (2020) 069 [arXiv:2002.01400] [INSPIRE].
P. Asadi, R. Capdevilla, C. Cesarotti and S. Homiller, Searching for leptoquarks at future muon Colliders, arXiv:2104.05720 [INSPIRE].
G.-Y. Huang, S. Jana, F.S. Queiroz and W. Rodejohann, Probing the \( {R}_{K^{\left(\ast \right)}} \) anomaly at a muon Collider, arXiv:2103.01617 [INSPIRE].
ALEPH collaboration, Search for charginos nearly mass degenerate with the lightest neutralino in e+e− collisions at center-of-mass energies up to 209 GeV, Phys. Lett. B 533 (2002) 223 [hep-ex/0203020] [INSPIRE].
DELPHI collaboration, Searches for supersymmetric particles in e+e− collisions up to 208 GeV and interpretation of the results within the MSSM, Eur. Phys. J. C 31 (2003) 421 [hep-ex/0311019] [INSPIRE].
F. del Aguila, J. de Blas and M. Pérez-Victoria, Effects of new leptons in electroweak precision data, Phys. Rev. D 78 (2008) 013010 [arXiv:0803.4008] [INSPIRE].
S. Kraml et al., SModelS: a tool for interpreting simplified-model results from the LHC and its application to supersymmetry, Eur. Phys. J. C 74 (2014) 2868 [arXiv:1312.4175] [INSPIRE].
F. Ambrogi et al., SModelS v1.1 user manual: Improving simplified model constraints with efficiency maps, Comput. Phys. Commun. 227 (2018) 72 [arXiv:1701.06586] [INSPIRE].
J. Dutta, S. Kraml, A. Lessa and W. Waltenberger, SModelS extension with the CMS supersymmetry search results from Run 2, LHEP 1 (2018) 5 [arXiv:1803.02204] [INSPIRE].
F. Ambrogi et al., SModelS v1.2: long-lived particles, combination of signal regions, and other novelties, Comput. Phys. Commun. 251 (2020) 106848 [arXiv:1811.10624] [INSPIRE].
T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
A. Buckley, PySLHA: a Pythonic interface to SUSY Les Houches Accord data, Eur. Phys. J. C 75 (2015) 467 [arXiv:1305.4194] [INSPIRE].
M. Drees, H. K. Dreiner, J. S. Kim, D. Schmeier and J. Tattersall, Checkmate: Confronting your favourite new physics model with LHC data, Comput. Phys. Commun. 187 (2015) 227.
D. Dercks, N. Desai, J.S. Kim, K. Rolbiecki, J. Tattersall and T. Weber, CheckMATE 2: from the model to the limit, Comput. Phys. Commun. 221 (2017) 383 [arXiv:1611.09856] [INSPIRE].
A.L. Read, Presentation of search results: the CL(s) technique, J. Phys. G 28 (2002) 2693 [INSPIRE].
M. Cacciari and G.P. Salam, Dispelling the N3 myth for the kt jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
DELPHES 3 collaboration, DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
CMS collaboration, Search for new physics in events with two soft oppositely charged leptons and missing transverse momentum in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 782 (2018) 440 [arXiv:1801.01846] [INSPIRE].
N. Arkani-Hamed, A. Delgado and G.F. Giudice, The well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].
CMS collaboration, Searches for long-lived charged particles in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV, JHEP 07 (2013) 122 [arXiv:1305.0491] [INSPIRE].
ATLAS collaboration, Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP 05 (2014) 071 [arXiv:1403.5294] [INSPIRE].
CMS collaboration, Constraints on the pMSSM, AMSB model and on other models from the search for long-lived charged particles in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, Eur. Phys. J. C 75 (2015) 325 [arXiv:1502.02522] [INSPIRE].
ATLAS collaboration, Search for electroweak production of supersymmetric particles in final states with two or three leptons at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 995 [arXiv:1803.02762] [INSPIRE].
CMS collaboration, Search for supersymmetric partners of electrons and muons in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 790 (2019) 140 [arXiv:1806.05264] [INSPIRE].
CMS collaboration, Search for heavy stable charged particles with 12.9 fb−1 of 2016 data, CMS-PAS-EXO-16-036 (2016).
ATLAS collaboration, Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in \( \sqrt{s} \) = 13 TeV pp collisions using the ATLAS detector, Eur. Phys. J. C 80 (2020) 123 [arXiv:1908.08215] [INSPIRE].
S. Kraml et al., SModelS: a tool for interpreting simplified-model results from the LHC and its application to supersymmetry, Eur. Phys. J. C 74 (2014) 2868 [arXiv:1312.4175] [INSPIRE].
C.K. Khosa, S. Kraml, A. Lessa, P. Neuhuber and W. Waltenberger, Smodels database update v1.2.3, arXiv:2005.00555.
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
G. Bélanger, F. Boudjema, A. Goudelis, A. Pukhov and B. Zaldivar, MicrOMEGAs5.0: freeze-in, Comput. Phys. Commun. 231 (2018) 173 [arXiv:1801.03509] [INSPIRE].
F. Feroz and M.P. Hobson, Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis, Mon. Not. Roy. Astron. Soc. 384 (2008) 449 [arXiv:0704.3704] [INSPIRE].
F. Feroz, M.P. Hobson and M. Bridges, MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc. 398 (2009) 1601 [arXiv:0809.3437] [INSPIRE].
F. Feroz, M.P. Hobson, E. Cameron and A.N. Pettitt, Importance nested sampling and the MultiNest algorithm, Open J. Astrophys. 2 (2019) 10 [arXiv:1306.2144] [INSPIRE].
J. Buchner et al., X-ray spectral modelling of the agn obscuring region in the cdfs: Bayesian model selection and catalogue, Astron. Astrophys. 564 (2014) A125.
CMS collaboration, Searches for long-lived charged particles, Eur. Phys. C 80 (2020) 572 [arXiv:2004.11305].
CMS collaboration, Search for electroweak production of charginos, neutralinos, and sleptons using leptonic final states in pp collisions at 8 TeV, Eur. Phys. J. C 80 (2020) 123 [arXiv:1908.08215].
CMS collaboration, Search for selectrons and smuons at \( \sqrt{s} \) = 13 TeV, CMS-PAS-SUS-17-009 (2017).
Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
G. Degrassi and G.F. Giudice, QED logarithms in the electroweak corrections to the muon anomalous magnetic moment, Phys. Rev. D 58 (1998) 053007 [hep-ph/9803384] [INSPIRE].
L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H.G. Tytgat, The inert doublet model: an archetype for dark matter, JCAP 02 (2007) 028 [hep-ph/0612275] [INSPIRE].
P. Athron, J.M. Cornell, F. Kahlhoefer, J. McKay, P. Scott and S. Wild, Impact of vacuum stability, perturbativity and XENON1T on global fits of ℤ2 and ℤ3 scalar singlet dark matter, Eur. Phys. J. C 78 (2018) 830 [arXiv:1806.11281] [INSPIRE].
XENON collaboration, First dark matter search results from the XENON1T experiment, Phys. Rev. Lett. 119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].
XENON collaboration, Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
GAMBIT Dark Matter Workgroup collaboration, DarkBit: a GAMBIT module for computing dark matter observables and likelihoods, Eur. Phys. J. C 77 (2017) 831 [arXiv:1705.07920] [INSPIRE].
GAMBIT collaboration, Global analyses of Higgs portal singlet dark matter models using GAMBIT, Eur. Phys. J. C 79 (2019) 38 [arXiv:1808.10465] [INSPIRE].
M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].
P. Athron, D. Harries, R. Nevzorov and A.G. Williams, Dark matter in a constrained E6 inspired SUSY model, JHEP 12 (2016) 128 [arXiv:1610.03374] [INSPIRE].
T. Moroi, The Muon anomalous magnetic dipole moment in the minimal supersymmetric standard model, Phys. Rev. D 53 (1996) 6565 [Erratum ibid. 56 (1997) 4424] [hep-ph/9512396] [INSPIRE].
T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Tenth-order QED contribution to the electron g − 2 and an improved value of the fine structure constant, Phys. Rev. Lett. 109 (2012) 111807 [arXiv:1205.5368] [INSPIRE].
T. Aoyama, T. Kinoshita and M. Nio, Revised and improved value of the QED tenth-order electron anomalous magnetic moment, Phys. Rev. D 97 (2018) 036001 [arXiv:1712.06060] [INSPIRE].
R.H. Parker, C. Yu, W. Zhong, B. Estey and H. Müller, Measurement of the fine-structure constant as a test of the Standard Model, Science 360 (2018) 191 [arXiv:1812.04130] [INSPIRE].
L. Morel, Z. Yao, P. Cladé and S. Guellati-Khélifa, Determination of the fine-structure constant with an accuracy of 81 parts per trillion, Nature 588 (2020) 61 [INSPIRE].
P. Athron, J.-h. Park, T. Steudtner, D. Stöckinger and A. Voigt, Precise Higgs mass calculations in (non-)minimal supersymmetry at both high and low scales, JHEP 01 (2017) 079 [arXiv:1609.00371] [INSPIRE].
T. Kwasnitza, D. Stöckinger and A. Voigt, Improved MSSM Higgs mass calculation using the 3-loop FlexibleEFTHiggs approach including xt -resummation, JHEP 07 (2020) 197 [arXiv:2003.04639] [INSPIRE].
S.-M. Zhao, T.-F. Feng, H.-B. Zhang, B. Yan and X.-J. Zhan, The corrections from one loop and two-loop Barr-Zee type diagrams to muon MDM in BLMSSM, JHEP 11 (2014) 119 [arXiv:1405.7561] [INSPIRE].
CMS collaboration, Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 03 (2018) 166 [arXiv:1709.05406] [INSPIRE].
ATLAS collaboration, Search for direct production of electroweakinos in final states with one lepton, missing transverse momentum and a Higgs boson decaying into two b-jets in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J. C 80 (2020) 691 [arXiv:1909.09226] [INSPIRE].
A. Canepa, T. Han and X. Wang, The search for electroweakinos, Ann. Rev. Nucl. Part. Sci. 70 (2020) 425 [arXiv:2003.05450] [INSPIRE].
CMS collaboration, Combined search for electroweak production of charginos and neutralinos in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 03 (2018) 160 [arXiv:1801.03957] [INSPIRE].
ATLAS collaboration, Search for the direct production of charginos and neutralinos in final states with tau leptons in \( \sqrt{s} \) = 13 TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 78 (2018) 154 [arXiv:1708.07875] [INSPIRE].
CMS collaboration, Search for new phenomena in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum in pp collisions at \( \sqrt{s} \) = 13 TeV, JHEP 03 (2018) 076 [arXiv:1709.08908] [INSPIRE].
ATLAS collaboration, Search for chargino-neutralino production using recursive jigsaw reconstruction in final states with two or three charged leptons in proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. D 98 (2018) 092012 [arXiv:1806.02293] [INSPIRE].
ATLAS collaboration, Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in \( \sqrt{s} \) = 13 TeV pp collisions with the ATLAS detector, Phys. Rev. D 101 (2020) 072001 [arXiv:1912.08479] [INSPIRE].
ATLAS collaboration, Searches for electroweak production of supersymmetric particles with compressed mass spectra in \( \sqrt{s} \) = 13 TeV pp collisions with the ATLAS detector, Phys. Rev. D 101 (2020) 052005 [arXiv:1911.12606] [INSPIRE].
CMS collaboration, Search for supersymmetry with a compressed mass spectrum in the vector boson fusion topology with 1-lepton and 0-lepton final states in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 08 (2019) 150 [arXiv:1905.13059] [INSPIRE].
GAMBIT collaboration, ColliderBit: a GAMBIT module for the calculation of high-energy collider observables and likelihoods, Eur. Phys. J. C 77 (2017) 795 [arXiv:1705.07919] [INSPIRE].
GAMBIT collaboration, GAMBIT: the global and modular beyond-the-standard-model inference tool, Eur. Phys. J. C 77 (2017) 784 [Addendum ibid. 78 (2018) 98] [arXiv:1705.07908] [INSPIRE].
GAMBIT Models Workgroup collaboration, SpecBit, DecayBit and PrecisionBit: GAMBIT modules for computing mass spectra, particle decay rates and precision observables, Eur. Phys. J. C 78 (2018) 22 [arXiv:1705.07936] [INSPIRE].
GAMBIT collaboration, Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module, Eur. Phys. J. C 77 (2017) 761 [arXiv:1705.07959] [INSPIRE].
GAMBIT Flavour Workgroup collaboration, FlavBit: a GAMBIT module for computing flavour observables and likelihoods, Eur. Phys. J. C 77 (2017) 786 [arXiv:1705.07933] [INSPIRE].
GAMBIT collaboration, Combined collider constraints on neutralinos and charginos, Eur. Phys. J. C 79 (2019) 395 [arXiv:1809.02097] [INSPIRE].
J. Bramante, N. Desai, P. Fox, A. Martin, B. Ostdiek and T. Plehn, Towards the final word on neutralino dark matter, Phys. Rev. D 93 (2016) 063525 [arXiv:1510.03460] [INSPIRE].
L. Roszkowski, E.M. Sessolo and S. Trojanowski, WIMP dark matter candidates and searches — current status and future prospects, Rept. Prog. Phys. 81 (2018) 066201 [arXiv:1707.06277] [INSPIRE].
J.R. Ellis, T. Falk and K.A. Olive, Neutralino-Stau coannihilation and the cosmological upper limit on the mass of the lightest supersymmetric particle, Phys. Lett. B 444 (1998) 367 [hep-ph/9810360] [INSPIRE].
J.R. Ellis, T. Falk, K.A. Olive and M. Srednicki, Calculations of neutralino-stau coannihilation channels and the cosmologically relevant region of MSSM parameter space, Astropart. Phys. 13 (2000) 181 [Erratum ibid. 15 (2001) 413] [hep-ph/9905481] [INSPIRE].
T. Nihei, L. Roszkowski and R. Ruiz de Austri, Exact cross-sections for the neutralino slepton coannihilation, JHEP 07 (2002) 024 [hep-ph/0206266] [INSPIRE].
K. Harigaya, K. Kaneta and S. Matsumoto, Gaugino coannihilations, Phys. Rev. D 89 (2014) 115021 [arXiv:1403.0715] [INSPIRE].
XENON100 collaboration, Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].
PandaX-II collaboration, Dark matter results from first 98.7 days of data from the PandaX-II experiment, Phys. Rev. Lett. 117 (2016) 121303 [arXiv:1607.07400] [INSPIRE].
LUX collaboration, Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
T. Bringmann, J. Edsjö, P. Gondolo, P. Ullio and L. Bergström, DarkSUSY 6: an advanced tool to compute dark matter properties numerically, JCAP 07 (2018) 033 [arXiv:1802.03399] [INSPIRE].
P. Huang and C.E.M. Wagner, Blind spots for neutralino dark matter in the MSSM with an intermediate mA, Phys. Rev. D 90 (2014) 015018 [arXiv:1404.0392] [INSPIRE].
L. Calibbi, I. Galon, A. Masiero, P. Paradisi and Y. Shadmi, Charged slepton flavor post the 8 TeV LHC: a simplified model analysis of low-energy constraints and LHC SUSY searches, JHEP 10 (2015) 043 [arXiv:1502.07753] [INSPIRE].
M. Chakraborti, S. Heinemeyer and I. Saha, Improved (g − 2)μ measurements and wino/higgsino dark matter, arXiv:2103.13403 [INSPIRE].
J.L. Feng, K.T. Matchev and T. Moroi, Focus points and naturalness in supersymmetry, Phys. Rev. D 61 (2000) 075005 [hep-ph/9909334] [INSPIRE].
J.L. Feng, K.T. Matchev and T. Moroi, Multi-TeV scalars are natural in minimal supergravity, Phys. Rev. Lett. 84 (2000) 2322 [hep-ph/9908309] [INSPIRE].
J.R. Ellis, K.A. Olive and P. Sandick, Phenomenology of GUT-less supersymmetry breaking, JHEP 06 (2007) 079 [arXiv:0704.3446] [INSPIRE].
J.C. Costa et al., Likelihood Analysis of the Sub-GUT MSSM in Light of LHC 13-TeV Data, Eur. Phys. J. C 78 (2018) 158 [arXiv:1711.00458] [INSPIRE].
M. Beneke, R. Szafron and K. Urban, Sommerfeld-corrected relic abundance of wino dark matter with NLO electroweak potentials, JHEP 02 (2021) 020 [arXiv:2009.00640] [INSPIRE].
H. Baer, V. Barger, D. Sengupta and X. Tata, Is natural higgsino-only dark matter excluded?, Eur. Phys. J. C 78 (2018) 838 [arXiv:1803.11210] [INSPIRE].
O. Buchmueller et al., The CMSSM and NUHM1 after LHC Run 1, Eur. Phys. J. C 74 (2014) 2922 [arXiv:1312.5250] [INSPIRE].
P. Bechtle et al., Killing the CMSSM softly, Eur. Phys. J. C 76 (2016) 96 [arXiv:1508.05951] [INSPIRE].
C. Han, K.-i. Hikasa, L. Wu, J.M. Yang and Y. Zhang, Status of CMSSM in light of current LHC Run-2 and LUX data, Phys. Lett. B 769 (2017) 470 [arXiv:1612.02296] [INSPIRE].
GAMBIT collaboration, Global fits of GUT-scale SUSY models with GAMBIT, Eur. Phys. J. C 77 (2017) 824 [arXiv:1705.07935] [INSPIRE].
LUX-ZEPLIN collaboration, Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment, Phys. Rev. D 101 (2020) 052002 [arXiv:1802.06039] [INSPIRE].
XENON collaboration, Projected WIMP sensitivity of the XENONnT dark matter experiment, JCAP 11 (2020) 031 [arXiv:2007.08796] [INSPIRE].
CLICdp, CLIC collaboration, The Compact Linear Collider (CLIC) — 2018 Summary Report, arXiv:1812.06018 [INSPIRE].
R. Capdevilla, D. Curtin, Y. Kahn and G. Krnjaic, Discovering the physics of (g − 2)μ at future muon colliders, Phys. Rev. D 103 (2021) 075028 [arXiv:2006.16277] [INSPIRE].
D. Buttazzo and P. Paradisi, Probing the muon g − 2 anomaly at a muon collider, arXiv:2012.02769 [INSPIRE].
W. Yin and M. Yamaguchi, Muon g − 2 at multi-TeV muon collider, arXiv:2012.03928 [INSPIRE].
R. Capdevilla, D. Curtin, Y. Kahn and G. Krnjaic, A no-lose theorem for discovering the new physics of (g − 2)μ at muon colliders, arXiv:2101.10334 [INSPIRE].
K. Cheung and Z.S. Wang, Physics potential of a muon-proton collider, Phys. Rev. D 103 (2021) 116009 [arXiv:2101.10476] [INSPIRE].
T. Han, S. Li, S. Su, W. Su and Y. Wu, Heavy Higgs bosons in 2HDM at a muon collider, arXiv:2102.08386 [INSPIRE].
J-PARC g-2 collaboration, New g − 2 experiment at J-PARC, Chin. Phys. C 34 (2010) 745 [INSPIRE].
M. Abe et al., A new approach for measuring the muon anomalous magnetic moment and electric dipole moment, PTEP 2019 (2019) 053C02 [arXiv:1901.03047] [INSPIRE].
G. Abbiendi et al., Measuring the leading hadronic contribution to the muon g-2 via μe scattering, Eur. Phys. J. C 77 (2017) 139 [arXiv:1609.08987] [INSPIRE].
P. Banerjee et al., Theory for muon-electron scattering @ 10 ppm: A report of the MUonE theory initiative, Eur. Phys. J. C 80 (2020) 591 [arXiv:2004.13663] [INSPIRE].
H. H. Patel, Package-x 2.0: A mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun. 218 (2017) 66.
K. Fujikawa, B.W. Lee and A.I. Sanda, Generalized renormalizable gauge formulation of spontaneously broken gauge theories, Phys. Rev. D 6 (1972) 2923 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2104.03691
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Athron, P., Balázs, C., Jacob, D.H.J. et al. New physics explanations of aμ in light of the FNAL muon g − 2 measurement. J. High Energ. Phys. 2021, 80 (2021). https://doi.org/10.1007/JHEP09(2021)080
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP09(2021)080