Abstract
We calculate the (semi-)static hard-loop self-energy and propagator using the Keldysh formalism in a momentum-space anisotropic quark-gluon plasma. The static retarded, advanced, and Feynman (symmetric) self-energies and propagators are calculated to all orders in the momentum-space anisotropy parameter ξ. For the retarded and advanced self-energies/propagators, we present a concise derivation and comparison with previously-obtained results and extend the calculation of the self-energies to next-to-leading order in the gluon energy, ω. For the Feynman self-energy/propagator, we present new results which are accurate to all orders in ξ. We compare our exact results with prior expressions for the Feynman self-energy/propagator which were obtained using Taylor-expansions around an isotropic state. We show that, unlike the Taylor-expanded results, the all-orders expression for the Feynman propagator is free from infrared singularities. Finally, we discuss the application of our results to the calculation of the imaginary-part of the heavy-quark potential in an anisotropic quark-gluon plasma.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
A. Mócsy , P. Petreczky and M. Strickland, Quarkonia in the Quark Gluon Plasma, Int. J. Mod. Phys. A 28 (2013) 1340012 [arXiv:1302.2180] [INSPIRE].
A. Andronic et al., Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions, Eur. Phys. J. C 76 (2016) 107 [arXiv:1506.03981] [INSPIRE].
M. Strickland, Anisotropic Hydrodynamics: Three lectures, Acta Phys. Polon. B 45 (2014) 2355 [arXiv:1410.5786] [INSPIRE].
W. Florkowski and R. Ryblewski, Highly-anisotropic and strongly-dissipative hydrodynamics for early stages of relativistic heavy-ion collisions, Phys. Rev. C 83 (2011) 034907 [arXiv:1007.0130] [INSPIRE].
M. Martinez and M. Strickland, Dissipative Dynamics of Highly Anisotropic Systems, Nucl. Phys. A 848 (2010) 183 [arXiv:1007.0889] [INSPIRE].
M. Martinez, R. Ryblewski and M. Strickland, Boost-Invariant (2+1)-dimensional Anisotropic Hydrodynamics, Phys. Rev. C 85 (2012) 064913 [arXiv:1204.1473] [INSPIRE].
R. Ryblewski and W. Florkowski, Highly-anisotropic hydrodynamics in 3+1 space-time dimensions, Phys. Rev. C 85 (2012) 064901 [arXiv:1204.2624] [INSPIRE].
D. Bazow, U.W. Heinz and M. Strickland, Second-order (2+1)-dimensional anisotropic hydrodynamics, Phys. Rev. C 90 (2014) 054910 [arXiv:1311.6720] [INSPIRE].
L. Tinti and W. Florkowski, Projection method and new formulation of leading-order anisotropic hydrodynamics, Phys. Rev. C 89 (2014) 034907 [arXiv:1312.6614] [INSPIRE].
M. Nopoush, R. Ryblewski and M. Strickland, Bulk viscous evolution within anisotropic hydrodynamics, Phys. Rev. C 90 (2014) 014908 [arXiv:1405.1355] [INSPIRE].
L. Tinti, Anisotropic matching principle for the hydrodynamic expansion, Phys. Rev. C 94 (2016) 044902 [arXiv:1506.07164] [INSPIRE].
D. Bazow, U.W. Heinz and M. Martinez, Nonconformal viscous anisotropic hydrodynamics, Phys. Rev. C 91 (2015) 064903 [arXiv:1503.07443] [INSPIRE].
M. Strickland, M. Nopoush and R. Ryblewski, Anisotropic hydrodynamics for conformal Gubser flow, Nucl. Phys. A 956 (2016) 268 [arXiv:1512.07334] [INSPIRE].
M. Alqahtani, M. Nopoush and M. Strickland, Quasiparticle equation of state for anisotropic hydrodynamics, Phys. Rev. C 92 (2015) 054910 [arXiv:1509.02913] [INSPIRE].
E. Molnar, H. Niemi and D.H. Rischke, Derivation of anisotropic dissipative fluid dynamics from the Boltzmann equation, Phys. Rev. D 93 (2016) 114025 [arXiv:1602.00573] [INSPIRE].
E. Molnár, H. Niemi and D.H. Rischke, Closing the equations of motion of anisotropic fluid dynamics by a judicious choice of a moment of the Boltzmann equation, Phys. Rev. D 94 (2016) 125003 [arXiv:1606.09019] [INSPIRE].
M. Alqahtani, M. Nopoush and M. Strickland, Quasiparticle anisotropic hydrodynamics for central collisions, Phys. Rev. C 95 (2017) 034906 [arXiv:1605.02101] [INSPIRE].
M. Alqahtani, M. Nopoush, R. Ryblewski and M. Strickland, (3+1)D Quasiparticle Anisotropic Hydrodynamics for Ultrarelativistic Heavy-Ion Collisions, Phys. Rev. Lett. 119 (2017) 042301 [arXiv:1703.05808] [INSPIRE].
P. Romatschke and M. Strickland, Collective modes of an anisotropic quark gluon plasma, Phys. Rev. D 68 (2003) 036004 [hep-ph/0304092] [INSPIRE].
P. Romatschke and M. Strickland, Collective modes of an anisotropic quark-gluon plasma II, Phys. Rev. D 70 (2004) 116006 [hep-ph/0406188] [INSPIRE].
B.S. Kasmaei, M. Nopoush and M. Strickland, Quark self-energy in an ellipsoidally anisotropic quark-gluon plasma, Phys. Rev. D 94 (2016) 125001 [arXiv:1608.06018] [INSPIRE].
A. Dumitru, Y. Guo and M. Strickland, The Heavy-quark potential in an anisotropic (viscous) plasma, Phys. Lett. B 662 (2008) 37 [arXiv:0711.4722] [INSPIRE].
A. Dumitru, Y. Guo, A. Mócsy and M. Strickland, Quarkonium states in an anisotropic QCD plasma, Phys. Rev. D 79 (2009) 054019 [arXiv:0901.1998] [INSPIRE].
Y. Burnier, M. Laine and M. Vepsäläinen, Quarkonium dissociation in the presence of a small momentum space anisotropy, Phys. Lett. B 678 (2009) 86 [arXiv:0903.3467] [INSPIRE].
A. Dumitru, Y. Guo and M. Strickland, The Imaginary part of the static gluon propagator in an anisotropic (viscous) QCD plasma, Phys. Rev. D 79 (2009) 114003 [arXiv:0903.4703] [INSPIRE].
Q. Du, A. Dumitru, Y. Guo and M. Strickland, Bulk viscous corrections to screening and damping in QCD at high temperatures, JHEP 01 (2017) 123 [arXiv:1611.08379] [INSPIRE].
S. Biondini, N. Brambilla, M.A. Escobedo and A. Vairo, Momentum anisotropy effects for quarkonium in a weakly-coupled quark-gluon plasma below the melting temperature, Phys. Rev. D 95 (2017) 074016 [arXiv:1701.06956] [INSPIRE].
M. Strickland, Thermal υ 1s and χ b1 suppression in \( \sqrt{s_{N\;N}}=2.76 \) TeV Pb-Pb collisions at the LHC, Phys. Rev. Lett. 107 (2011) 132301 [arXiv:1106.2571] [INSPIRE].
M. Strickland and D. Bazow, Thermal Bottomonium Suppression at RHIC and LHC, Nucl. Phys. A 879 (2012) 25 [arXiv:1112.2761] [INSPIRE].
B. Krouppa, R. Ryblewski and M. Strickland, Bottomonia suppression in 2.76 TeV Pb-Pb collisions, Phys. Rev. C 92 (2015) 061901 [arXiv:1507.03951] [INSPIRE].
B. Krouppa and M. Strickland, Predictions for bottomonia suppression in 5.023 TeV Pb-Pb collisions, Universe 2 (2016) 16 [arXiv:1605.03561] [INSPIRE].
B. Krouppa, R. Ryblewski and M. Strickland, Bottomonia suppression in heavy-ion collisions, in the 26th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2017) Chicago, Illinois U.S.A., 6-11 February 2017 [arXiv:1704.02361] [INSPIRE].
M.E. Carrington, D.-f. Hou and M.H. Thoma, Equilibrium and nonequilibrium hard thermal loop resummation in the real time formalism, Eur. Phys. J. C 7 (1999) 347 [hep-ph/9708363] [INSPIRE].
M.E. Carrington, D.-f. Hou and M.H. Thoma, Ward identities in nonequilibrium QED, Phys. Rev. D 58 (1998) 085025 [hep-th/9801103] [INSPIRE].
S. Mrowczynski and M.H. Thoma, Hard loop approach to anisotropic systems, Phys. Rev. D 62 (2000) 036011 [hep-ph/0001164] [INSPIRE].
S. Mrowczynski, B. Schenke and M. Strickland, Color instabilities in the quark-gluon plasma, Phys. Rept. 682 (2017) 1 [arXiv:1603.08946] [INSPIRE].
M. Laine, O. Philipsen, P. Romatschke and M. Tassler, Real-time static potential in hot QCD, JHEP 03 (2007) 054 [hep-ph/0611300] [INSPIRE].
P.B. Arnold and G.D. Moore, QCD plasma instabilities: The NonAbelian cascade, Phys. Rev. D 73 (2006) 025006 [hep-ph/0509206] [INSPIRE].
P.B. Arnold and G.D. Moore, The Turbulent spectrum created by non-Abelian plasma instabilities, Phys. Rev. D 73 (2006) 025013 [hep-ph/0509226] [INSPIRE].
A. Rebhan, P. Romatschke and M. Strickland, Dynamics of quark-gluon-plasma instabilities in discretized hard-loop approximation, JHEP 09 (2005) 041 [hep-ph/0505261] [INSPIRE].
M. Strickland, Thermalization and the chromo-Weibel instability, J. Phys. G 34 (2007) S429 [hep-ph/0701238] [INSPIRE].
A. Dumitru, Y. Nara and M. Strickland, Ultraviolet avalanche in anisotropic non-Abelian plasmas, Phys. Rev. D 75 (2007) 025016 [hep-ph/0604149] [INSPIRE].
A. Rebhan, M. Strickland and M. Attems, Instabilities of an anisotropically expanding non-Abelian plasma: 1D+3V discretized hard-loop simulations, Phys. Rev. D 78 (2008) 045023 [arXiv:0802.1714] [INSPIRE].
M. Attems, A. Rebhan and M. Strickland, Instabilities of an anisotropically expanding non-Abelian plasma: 3D+3V discretized hard-loop simulations, Phys. Rev. D 87 (2013) 025010 [arXiv:1207.5795] [INSPIRE].
M. Laine, O. Philipsen and M. Tassler, Thermal imaginary part of a real-time static potential from classical lattice gauge theory simulations, JHEP 09 (2007) 066 [arXiv:0707.2458] [INSPIRE].
B. Schenke, M. Strickland, C. Greiner and M.H. Thoma, A Model of the effect of collisions on QCD plasma instabilities, Phys. Rev. D 73 (2006) 125004 [hep-ph/0603029] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1706.08091
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Nopoush, M., Guo, Y. & Strickland, M. The static hard-loop gluon propagator to all orders in anisotropy. J. High Energ. Phys. 2017, 63 (2017). https://doi.org/10.1007/JHEP09(2017)063
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP09(2017)063