Abstract
We update the allowed parameter space of the simple chaotic inflationary model with quartic potential and light inflaton [1] taking into account recent results from cosmology (CMB observations from SPT, ACT and WMAP) and from particle physics (LHC hints of the SM Higgs boson). The non-minimal (yet small) coupling to gravity of the inflaton becomes essential to fit the observational data. The inflaton has mass above 300 MeV and can be searched for at B-factories in B-meson two-body decays to kaon and inflaton. The inflaton lifetime depends on the model parameters, resulting in various inflaton signatures: either a missing energy, or a displaced vertex from the B-meson decay position, or a resonance in the Dalitz plot of a three particle decay. We also discuss the implementation of the inflaton model to the νMSM, where the inflaton can be responsible for production of the dark matter sterile neutrino in the early Universe.
Similar content being viewed by others
References
F. Bezrukov and D. Gorbunov, Light inflaton hunter’s guide, JHEP 05 (2010) 010 [arXiv:0912.0390] [INSPIRE].
A.A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].
V.F. Mukhanov and G. Chibisov, Quantum fluctuation and nonsingular universe (in Russian), JETP Lett. 33 (1981) 532 [Pisma Zh. Eksp. Teor. Fiz. 33 (1981) 549] [INSPIRE].
A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].
A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B 108 (1982) 389 [INSPIRE].
A. Albrecht and P.J. Steinhardt, Cosmology for Grand Unified Theories with radiatively induced symmetry breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].
M. Shaposhnikov and I. Tkachev, The νMSM, inflation and dark matter, Phys. Lett. B 639 (2006) 414 [hep-ph/0604236] [INSPIRE].
ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
K. Story et al., A measurement of the Cosmic Microwave Background damping tail from the 2500-square-degree SPT-SZ survey, arXiv:1210.7231 [INSPIRE].
J.L. Sievers et al., The Atacama Cosmology Telescope: cosmological parameters from three seasons of data, arXiv:1301.0824 [INSPIRE].
WMAP collaboration, G. Hinshaw et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results, arXiv:1212.5226 [INSPIRE].
T. Asaka, S. Blanchet and M. Shaposhnikov, The νMSM, dark matter and neutrino masses, Phys. Lett. B 631 (2005) 151 [hep-ph/0503065] [INSPIRE].
T. Asaka and M. Shaposhnikov, The νMSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620 (2005) 17 [hep-ph/0505013] [INSPIRE].
D.I. Kaiser, Primordial spectral indices from generalized Einstein theories, Phys. Rev. D 52 (1995) 4295 [astro-ph/9408044] [INSPIRE].
E. Komatsu and T. Futamase, Complete constraints on a nonminimally coupled chaotic inflationary scenario from the Cosmic Microwave Background, Phys. Rev. D 59 (1999) 064029 [astro-ph/9901127] [INSPIRE].
A.R. Liddle and D.H. Lyth, The cold dark matter density perturbation, Phys. Rept. 231 (1993) 1 [astro-ph/9303019] [INSPIRE].
D.S. Gorbunov and V.A. Rubakov, Introduction to the theory of the early universe: cosmological perturbations and inflationary theory, World Scientific, Hackensack U.S.A. (2011).
A.D. Linde, Chaotic inflation, Phys. Lett. B 129 (1983) 177 [INSPIRE].
D. Salopek, Consequences of the COBE satellite for the inflationary scenario, Phys. Rev. Lett. 69 (1992) 3602 [INSPIRE].
F. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].
A. Starobinsky, The perturbation spectrum evolving from a nonsingular initially de-Sitter cosmology and the microwave background anisotropy, Sov. Astron. Lett. 9 (1983) 302 [INSPIRE].
D. Gorbunov and A. Panin, Scalaron the mighty: producing dark matter and baryon asymmetry at reheating, Phys. Lett. B 700 (2011) 157 [arXiv:1009.2448] [INSPIRE].
F. Bezrukov, D. Gorbunov and M. Shaposhnikov, On initial conditions for the hot big bang, JCAP 06 (2009) 029 [arXiv:0812.3622] [INSPIRE].
F. Bezrukov and D. Gorbunov, Distinguishing between R 2 -inflation and Higgs-inflation, Phys. Lett. B 713 (2012) 365 [arXiv:1111.4397] [INSPIRE].
D. Gorbunov and A. Tokareva, R 2 -inflation with conformal SM Higgs field, arXiv:1212.4466 [INSPIRE].
A. Anisimov, Y. Bartocci and F.L. Bezrukov, Inflaton mass in the νMSM inflation, Phys. Lett. B 671 (2009) 211 [arXiv:0809.1097] [INSPIRE].
Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].
F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].
G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].
S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett. B 716 (2012) 214 [arXiv:1207.0980] [INSPIRE].
A. Pilaftsis, CP violation and baryogenesis due to heavy Majorana neutrinos, Phys. Rev. D 56 (1997) 5431 [hep-ph/9707235] [INSPIRE].
D. Nickeler, M. Karlicky and M. Barta, Stationary stagnation point flows in the vicinity of a 2D magnetic null point: I. Systems with vanishing electric field and an X-type magnetic null point, Ann. Rev. Nucl. Part. Sci. 59 (2009) 191 [arXiv:0909.0836] [INSPIRE].
L. Canetti, M. Drewes, T. Frossard and M. Shaposhnikov, Dark matter, baryogenesis and neutrino oscillations from right handed neutrinos, Phys. Rev. D 87 (2013) 093006 [arXiv:1208.4607] [INSPIRE].
A. Roy and M. Shaposhnikov, Resonant production of the sterile neutrino dark matter and fine-tunings in the νMSM, Phys. Rev. D 82 (2010) 056014 [arXiv:1006.4008] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1303.4395
Rights and permissions
About this article
Cite this article
Bezrukov, F., Gorbunov, D. Light inflaton after LHC8 and WMAP9 results. J. High Energ. Phys. 2013, 140 (2013). https://doi.org/10.1007/JHEP07(2013)140
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP07(2013)140