Abstract
We consider a scenario where supersymmetry is broken at a high energy scale, out of reach of the LHC, but leaves a few fermionic states at the TeV scale. The particle content of the low-energy effective theory is similar to that of Split Supersymmetry. However, the gauginos and higgsinos are replaced by fermions carrying the same quantum numbers but having different couplings, which we call fake gauginos and fake higgsinos. We study the prediction for the light-Higgs mass in this Fake Split-SUSY Model (FSSM). We find that, in contrast to Split or High-Scale Supersymmetry, a 126 GeV Higgs boson is easily obtained even for arbitrarily high values of the supersymmetry scale M S . For M S ≳ 108 GeV, the Higgs mass is almost independent of the supersymmetry scale and the stop mixing parameter, while the observed value is achieved for tan β between 1.3 and 1.8 depending on the gluino mass.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].
G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65-89] [hep-ph/0406088] [INSPIRE].
N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].
N. Bernal, A. Djouadi and P. Slavich, The MSSM with heavy scalars, JHEP 07 (2007) 016 [arXiv:0705.1496] [INSPIRE].
G.F. Giudice and A. Strumia, Probing High-Scale and Split Supersymmetry with Higgs Mass Measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].
P. Fayet, MASSIVE GLUINOS, Phys. Lett. B 78 (1978) 417 [INSPIRE].
I. Antoniadis, A. Delgado, K. Benakli, M. Quirós and M. Tuckmantel, Splitting extended supersymmetry, Phys. Lett. B 634 (2006) 302 [hep-ph/0507192] [INSPIRE].
I. Antoniadis, K. Benakli, A. Delgado, M. Quirós and M. Tuckmantel, Split extended supersymmetry from intersecting branes, Nucl. Phys. B 744 (2006) 156 [hep-th/0601003] [INSPIRE].
M.S. Carena, A. Megevand, M. Quirós and C.E.M. Wagner, Electroweak baryogenesis and new TeV fermions, Nucl. Phys. B 716 (2005) 319 [hep-ph/0410352] [INSPIRE].
J. Unwin, R-symmetric High Scale Supersymmetry, Phys. Rev. D 86 (2012) 095002 [arXiv:1210.4936] [INSPIRE].
G. Bélanger, K. Benakli, M. Goodsell, C. Moura and A. Pukhov, Dark Matter with Dirac and Majorana Gaugino Masses, JCAP 08 (2009) 027 [arXiv:0905.1043] [INSPIRE].
E. Dudas, M. Goodsell, L. Heurtier and P. Tziveloglou, Flavour models with Dirac and fake gluinos, arXiv:1312.2011 [INSPIRE].
K. Benakli, M.D. Goodsell, F. Staub and W. Porod, A constrained minimal Dirac gaugino supersymmetric standard model, in preparation.
K. Benakli and M.D. Goodsell, Dirac Gauginos in General Gauge Mediation, Nucl. Phys. B 816 (2009) 185 [arXiv:0811.4409] [INSPIRE].
K. Benakli and M.D. Goodsell, Dirac Gauginos, Gauge Mediation and Unification, Nucl. Phys. B 840 (2010) 1 [arXiv:1003.4957] [INSPIRE].
C. Csáki, J. Goodman, R. Pavesi and Y. Shirman, The m D − b M Problem of Dirac Gauginos and its Solutions, Phys. Rev. D 89 (2014) 055005 [arXiv:1310.4504] [INSPIRE].
P. Gambino, G.F. Giudice and P. Slavich, Gluino decays in split supersymmetry, Nucl. Phys. B 726 (2005) 35 [hep-ph/0506214] [INSPIRE].
CMS collaboration, Search for Heavy Stable Charged Particles in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 03 (2011) 024 [arXiv:1101.1645] [INSPIRE].
ATLAS collaboration, Search for stable hadronising squarks and gluinos with the ATLAS experiment at the LHC, Phys. Lett. B 701 (2011) 1 [arXiv:1103.1984] [INSPIRE].
CMS collaboration, Searches for long-lived charged particles in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV, JHEP 07 (2013) 122 [arXiv:1305.0491] [INSPIRE].
ATLAS collaboration, Search for long-lived stopped R-hadrons decaying out-of-time with pp collisions using the ATLAS detector, Phys. Rev. D 88 (2013) 112003 [arXiv:1310.6584] [INSPIRE].
A. Arvanitaki, C. Davis, P.W. Graham, A. Pierce and J.G. Wacker, Limits on split supersymmetry from gluino cosmology, Phys. Rev. D 72 (2005) 075011 [hep-ph/0504210] [INSPIRE].
E. Dudas, M. Goodsell and P. Tziveloglou, Goldstini and Dirac gaugino masses, in preparation.
T.K. Hemmick et al., A Search for Anomalously Heavy Isotopes of Low Z Nuclei, Phys. Rev. D 41 (1990) 2074 [INSPIRE].
P.F. Smith et al., A Search For Anomalous Hydrogen In Enriched D-2 O, Using A Time-of-flight Spectrometer, Nucl. Phys. B 206 (1982) 333 [INSPIRE].
Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].
Tevatron Electroweak Working Group, CDF, D0 collaboration, M. Muether et al., Combination of CDF and DO results on the mass of the top quark using up to 8.7 fb −1 at the Tevatron, arXiv:1305.3929 [INSPIRE].
J. Fleischer, F. Jegerlehner, O.V. Tarasov and O.L. Veretin, Two loop QCD corrections of the massive fermion propagator, Nucl. Phys. B 539 (1999) 671 [Erratum ibid. B 571 (2000) 511-512] [hep-ph/9803493] [INSPIRE].
L.V. Avdeev and M.Y. Kalmykov, Pole masses of quarks in dimensional reduction, Nucl. Phys. B 502 (1997) 419 [hep-ph/9701308] [INSPIRE].
M. Binger, Higgs boson mass in split supersymmetry at two-loops, Phys. Rev. D 73 (2006) 095001 [hep-ph/0408240] [INSPIRE].
C. Tamarit, Decoupling heavy sparticles in hierarchical SUSY scenarios: Two-loop Renormalization Group equations, arXiv:1204.2292 [INSPIRE].
F. Staub, SARAH 4: A tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].
F. Lyonnet, I. Schienbein, F. Staub and A. Wingerter, PyR@TE: Renormalization Group Equations for General Gauge Theories, Comput. Phys. Commun. 185 (2014) 1130 [arXiv:1309.7030] [INSPIRE].
A. Sirlin and R. Zucchini, Dependence of the Quartic Coupling H(m) on M(H) and the Possible Onset of New Physics in the Higgs Sector of the Standard Model, Nucl. Phys. B 266 (1986) 389 [INSPIRE].
G. Degrassi, S. Di Vita, J. Elias-Miro, J.R. Espinosa, G.F. Giudice et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].
D. Buttazzo, G. Degrassi, P.P. Giardino, G.F. Giudice, F. Sala et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].
K. Benakli, Phenomenology of low quantum gravity scale models, Phys. Rev. D 60 (1999) 104002 [hep-ph/9809582] [INSPIRE].
A. Delgado, M. Garcia and M. Quirós, Electroweak and supersymmetry breaking from the Higgs discovery, arXiv:1312.3235 [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1312.5220
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Benakli, K., Darmé, L., Goodsell, M.D. et al. A fake split-supersymmetry model for the 126 GeV Higgs. J. High Energ. Phys. 2014, 113 (2014). https://doi.org/10.1007/JHEP05(2014)113
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP05(2014)113