Abstract
We present results on 4-lepton + 2-jet production, the partonic processes most commonly described as vector boson pair production in the Vector Boson Fusion (VBF) mode. This final state contains diagrams that are mediated by Higgs boson exchange. We focus particularly on the high-mass behaviour of the Higgs boson mediated diagrams, which unlike on-shell production, gives information about the Higgs couplings without assumptions on the Higgs boson total width. We assess the sensitivity of the high-mass region to Higgs coupling strengths, considering all vector boson pair channels, W−W+, W±W±, W±Z and ZZ. Because of the small background, the most promising mode is W+W+ which has sensitivity to Higgs couplings because of Higgs boson exchange in the t-channel. Using the Caola-Melnikov (CM) method, the off-shell couplings can be interpreted as bounds on the Higgs boson total width. We estimate the bound that can be obtained with current data, as well as the bounds that could be obtained at \( \sqrt{s}=13 \) TeV in the VBF channel for data samples of 100 and 300 fb−1. The CM method has already been successfully applied in the gluon fusion (GGF) production channel. The VBF production channel gives important complementary information, because both production and decay of the Higgs boson occur already at tree graph level.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, arXiv:1101.0593 [INSPIRE].
N. Kauer and G. Passarino, Inadequacy of zero-width approximation for a light Higgs boson signal, JHEP 08 (2012) 116 [arXiv:1206.4803] [INSPIRE].
F. Caola and K. Melnikov, Constraining the Higgs boson width with ZZ production at the LHC, Phys. Rev. D 88 (2013) 054024 [arXiv:1307.4935] [INSPIRE].
J.M. Campbell, R.K. Ellis and C. Williams, Bounding the Higgs width at the LHC using full analytic results for gg → e − e + μ − μ +, JHEP 04 (2014) 060 [arXiv:1311.3589] [INSPIRE].
CMS collaboration, Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs, Phys. Lett. B 736 (2014) 64 [arXiv:1405.3455] [INSPIRE].
ATLAS collaboration, Determination of the off-shell Higgs boson signal strength in the high-mass ZZ final state with the ATLAS detector, ATLAS-CONF-2014-042 (2014).
C. Englert and M. Spannowsky, Limitations and Opportunities of Off-Shell Coupling Measurements, Phys. Rev. D 90 (2014) 053003 [arXiv:1405.0285] [INSPIRE].
H.E. Logan, Hiding a Higgs width enhancement from off-shell gg(→ h *) → ZZ measurements, arXiv:1412.7577 [INSPIRE].
A. Azatov, C. Grojean, A. Paul and E. Salvioni, Taming the off-shell Higgs boson, Zh. Eksp. Teor. Fiz. 147 (2015) 410 [arXiv:1406.6338] [INSPIRE].
G. Cacciapaglia, A. Deandrea, G. Drieu La Rochelle and J.-B. Flament, Higgs couplings: disentangling New Physics with off-shell measurements, Phys. Rev. Lett. 113 (2014) 201802 [arXiv:1406.1757] [INSPIRE].
J.S. Gainer, J. Lykken, K.T. Matchev, S. Mrenna and M. Park, Beyond Geolocating: Constraining Higher Dimensional Operators in H → 4ℓ with Off-Shell Production and More, Phys. Rev. D 91 (2015) 035011 [arXiv:1403.4951] [INSPIRE].
C. Englert, Y. Soreq and M. Spannowsky, Off-Shell Higgs Coupling Measurements in BSM scenarios, arXiv:1410.5440 [INSPIRE].
W. Kilian, T. Ohl, J. Reuter and M. Sekulla, High-Energy Vector Boson Scattering after the Higgs Discovery, arXiv:1408.6207 [INSPIRE].
M. Szleper, The Higgs boson and the physics of WW scattering before and after Higgs discovery, arXiv:1412.8367 [INSPIRE].
B.W. Lee, C. Quigg and H.B. Thacker, Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].
S. Dawson, The Effective W Approximation, Nucl. Phys. B 249 (1985) 42 [INSPIRE].
G.L. Kane, W.W. Repko and W.B. Rolnick, The Effective W ± , Z 0 Approximation for High-Energy Collisions, Phys. Lett. B 148 (1984) 367 [INSPIRE].
ATLAS collaboration, Measurement of the electroweak production of dijets in association with a Z-boson and distributions sensitive to vector boson fusion in proton-proton collisions at \( \sqrt{s}=8 \) TeV using the ATLAS detector, JHEP 04 (2014) 031 [arXiv:1401.7610] [INSPIRE].
CMS collaboration, Measurement of electroweak production of two jets in association with a Z boson in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 66 [arXiv:1410.3153] [INSPIRE].
B. Jager, S. Schneider and G. Zanderighi, Next-to-leading order QCD corrections to electroweak Zjj production in the POWHEG BOX, JHEP 09 (2012) 083 [arXiv:1207.2626] [INSPIRE].
A. Denner, L. Hofer, A. Scharf and S. Uccirati, Electroweak corrections to lepton pair production in association with two hard jets at the LHC, JHEP 01 (2015) 094 [arXiv:1411.0916] [INSPIRE].
ATLAS collaboration, Evidence for Electroweak Production of W ± W ± jj in pp Collisions at \( \sqrt{s}=8 \) TeV with the ATLAS Detector, Phys. Rev. Lett. 113 (2014) 141803 [arXiv:1405.6241] [INSPIRE].
CMS collaboration, Study of vector boson scattering and search for new physics in events with two same-sign leptons and two jets, Phys. Rev. Lett. 114 (2015) 051801 [arXiv:1410.6315] [INSPIRE].
J.M. Campbell and R.K. Ellis, MCFM for the Tevatron and the LHC, Nucl. Phys. Proc. Suppl. 205-206 (2010) 10 [arXiv:1007.3492] [INSPIRE].
A. Ballestrero, A. Belhouari, G. Bevilacqua, V. Kashkan and E. Maina, PHANTOM: A Monte Carlo event generator for six parton final states at high energy colliders, Comput. Phys. Commun. 180 (2009) 401 [arXiv:0801.3359] [INSPIRE].
A. Ballestrero, D.B. Franzosi and E. Maina, Vector-Vector scattering at the LHC with two charged leptons and two neutrinos in the final state, JHEP 06 (2011) 013 [arXiv:1011.1514] [INSPIRE].
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
J.R. Andersen and J.M. Smillie, QCD and electroweak interference in Higgs production by gauge boson fusion, Phys. Rev. D 75 (2007) 037301 [hep-ph/0611281] [INSPIRE].
M. Ciccolini, A. Denner and S. Dittmaier, Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC, Phys. Rev. D 77 (2008) 013002 [arXiv:0710.4749] [INSPIRE].
J. Baglio et al., Release Note - VBFNLO 2.7.0, arXiv:1404.3940 [INSPIRE].
B. Jager and G. Zanderighi, NLO corrections to electroweak and QCD production of W + W + plus two jets in the POWHEGBOX, JHEP 11 (2011) 055 [arXiv:1108.0864] [INSPIRE].
B. Jager and G. Zanderighi, Electroweak W + W − jj prodution at NLO in QCD matched with parton shower in the POWHEG-BOX, JHEP 04 (2013) 024 [arXiv:1301.1695] [INSPIRE].
A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e + e − → 4 fermions +γ, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [INSPIRE].
A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].
J.R. Gaunt, C.-H. Kom, A. Kulesza and W.J. Stirling, Same-sign W pair production as a probe of double parton scattering at the LHC, Eur. Phys. J. C 69 (2010) 53 [arXiv:1003.3953] [INSPIRE].
LHC Higgs Cross Section Working Group collaboration, S. Heinemeyer et al., Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, arXiv:1307.1347 [INSPIRE].
T. Corbett, O.J.P. Éboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Determining Triple Gauge Boson Couplings from Higgs Data, Phys. Rev. Lett. 111 (2013) 011801 [arXiv:1304.1151] [INSPIRE].
ATLAS collaboration, Observation and measurement of Higgs boson decays to WW * with the ATLAS detector, arXiv:1412.2641 [INSPIRE].
CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV, arXiv:1412.8662 [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1502.02990
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Campbell, J.M., Ellis, R.K. Higgs constraints from vector boson fusion and scattering. J. High Energ. Phys. 2015, 30 (2015). https://doi.org/10.1007/JHEP04(2015)030
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP04(2015)030