Nothing Special   »   [go: up one dir, main page]

Skip to main content

Computer-aided layout design

  • Chapter
  • First Online:
Mathematical Programming in Use

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 9))

Abstract

Within the general problem area of location problems, the layout planning problem or facilities location problem has for years attracted the attention of building planners (architects, industrial engineers) and operations researchers.

The article outlines the general structure of the problem including the well-known prototype formulation “The Quadratic Assignment Problem”, briefly reviews the state of the art in solving such prototype problem formulations, and criticizes these, first from a computational point of view and then—and most important—from a practical, user-oriented point of view. Based upon this assessment, and the author’s own experience in tackling layout problems, a recently developed model, primarily aiming at an appraisal of a given layout according to certain criteria is described. The interactive model can serve as a powerful tool for architects during the process of experimentation with alternative layouts. Besides calculating the “internal transport”, the model can take into account other measures which are usually considered to be of a “qualitative, aesthetic” nature such as noise, availability of daylight et cetera. A number of macro’s facilitates the transition from one layout to another.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Adolphson and T.C. Hu, “Optimal linear ordering”, SIAM Journal of Applied Mathematics 25 (1973) 403–423.

    Article  MATH  MathSciNet  Google Scholar 

  2. G.C. Armour and E.S. Buffa, “A heuristic algorithm and simulation approach to the relative location of facilities”, Management Science 9 (1963) 294–309.

    Article  Google Scholar 

  3. C. Beaudelot-Roucairol, “Affectation quadratique”, Doctoral Thesis, Université Pierre et Marie Curie, Paris VI (1976).

    Google Scholar 

  4. J.F. Brotchie, A.R. Toakley and R. Sharpe, “On an urban planning model”, in: Analysis of urban development, Melbourne University, Melbourne (1970).

    Google Scholar 

  5. J.F. Brotchie, R. Sharpe and J. Dickey, “The integration of land use and transportation planning using modelling techniques”, in: Traffic control and transportation systems (North-Holland, Amsterdam, 1974).

    Google Scholar 

  6. E.S. Buffa, G.C. Armour and T.E. Vollmann, “Allocating facilities with CRAFT”, Harvard Business Review 42 (1964) 136–159.

    Google Scholar 

  7. R.E. Burkard, “Die Störungsmethode zur Lösung quadratischer Zuordnungsprobleme”, Operations Research Verfahren 16 (1973) 84–108.

    Google Scholar 

  8. R.E. Burkard and K.-H. Stratmann, “Numerical investigations on quadratic assignment problems”, Naval Research Logistics Quarterly, to appear.

    Google Scholar 

  9. R.E. Burkard and J. Offermann, “Entwurf von Schreibmaschintastaturen mittels quadratischer Zuordnungsprobleme”, Zeitschrift für Operations Research 21 (1977) B121–B132.

    Article  Google Scholar 

  10. N. Christofides and M. Gerrard, “Special cases of the quadratic assignment problem”, Management Sciences Research Report No. 391, Carnegie-Mellon University, Pittsburgh (1976).

    Google Scholar 

  11. S.A. Cook, “The Complexity of theorem-proving procedures”, Proceedings of the 3rd annual ACM symposium on theory of computing (1971) pp. 151–158.

    Google Scholar 

  12. J.W. Dickey and J.W. Hopkins, “Campus building arrangement using TOPAZ”, Transportation Research 6 (1972) 59–68.

    Article  Google Scholar 

  13. J.W. Eyster, J.A. White and W.W. Wierwille, “On solving multifacility location problems using a hyperboloid approximation procedure”, AIIE Transactions 5 (1973) 1–6.

    Google Scholar 

  14. A. David, P. Noviant and C. Roucairol, “A global spatial localization of activities method”, in: Design activity international conference (London, 1973).

    Google Scholar 

  15. R.L. Francis and J.A. White, Facility layout and location (Prentice-Hall, Englewood Cliffs, NJ., 1974).

    Google Scholar 

  16. G.K. Gaschütz and J.H. Ahrens, “Suboptimal algorithms for the quadratic assignment problem”, Naval Research Logistics Quarterly 15 (1968) 49–62.

    Google Scholar 

  17. J.W. Gavett and N.V. Plyter, “The optimal assignment of facilities to locations by branch and bound”, Operations Research 14 (1966) 210–232.

    Article  Google Scholar 

  18. A.M. Geoffrion and G.W. Graves, “Scheduling parallel production lines with changeover costs: Practical application of a quadratic assignment/LP approach”, Operations Research 24 (1976) 595–610.

    Article  MATH  Google Scholar 

  19. P.C. Gilmore, “Optimal and suboptimal algorithms for the quadratic assignment problem”, SIAM Journal 10 (1962) 305–313.

    MATH  MathSciNet  Google Scholar 

  20. M. Hanan and J.M. Kurtzberg, “A review of the placement and quadratic assignment problems”, SIAM Review 14 (1972) 324–342.

    Article  MATH  MathSciNet  Google Scholar 

  21. S.K. Jacobsen and P.M. Pruzan, “Lokalisering—modelle og løsningsmetoder”, IMSOR, Danmarks tekniske Højskole, Lyngby (1976).

    Google Scholar 

  22. R.M. Karp, “Reducibility among combinatorial problems”, in: R.E. Miller and J.W. Thatcher, eds., Complexity of computer computations (Plenum Press, New York, 1972) pp. 85–103.

    Google Scholar 

  23. T.M. Khalil, “Facilities relative allocation technique (FRAT)”, Int. J. Prod. Res. 11 (1973) 181–194.

    Article  Google Scholar 

  24. T.C. Koopmans and M. Beckman, “Assignment problems and the location of economic activities”, Econometrica 25 (1957) 52–76.

    Article  Google Scholar 

  25. J. Krarup, “Quadratic assignment”, DATA 3/72 (1972).

    Google Scholar 

  26. J. Krarup, “The peripatetic salesman and some related unsolved problems”, in: B. Roy, ed., Combinatorial programming: Methods and applications (Reidel, Dordrecht, 1975) pp. 173–178.

    Google Scholar 

  27. J. Krarup and P.M. Pruzan, “Selected Families of discrete location problems. Part I: Center problems. Part II: Median problems”, DIKU-report 77-7, Institute of Datalogy, University of Copenhagen, Copenhagen, (1977). Forthcoming in Annals of Discrete Mathematics.

    Google Scholar 

  28. J. Krarup and P.M. Pruzan, “Selected families of discrete location problems. Part III: The plant location family”, Working Paper No. WP-12-77, University of Calgary, Faculty of Business (Calgary, 1977).

    Google Scholar 

  29. J. Krarup and P.M. Pruzan, “Challenging unsolved center and median problems”, DIKU-report 77-10, Institute of Datalogy, University of Copenhagen (Copenhagen, 1977). To be published by the Polish Academy of Sciences.

    Google Scholar 

  30. E.L. Lawer, “The quadratic assignment problem”, Management Science 9 (1963) 586–599.

    Article  MathSciNet  Google Scholar 

  31. E.L. Lawler, “The quadratic assignment problem: A brief review”, in: B. Roy, ed., Combinatorial programming: methods and applications (D. Reidel, Dordrecht, 1975) pp. 351–360.

    Google Scholar 

  32. J.K. Lenstra, Sequencing by enumerative methods (Mathematisch Centrum, Amsterdam, 1976).

    Google Scholar 

  33. R.F. Love, “Locating facilities in 3-dimensional space by convex programming”, Naval Research Logistics Quarterly 16 (1969) 503–516.

    MATH  MathSciNet  Google Scholar 

  34. R.E. Machol, “Letter to the Editor”, OR/MS TODAY 3 (4) (1976).

    Google Scholar 

    Google Scholar 

  35. R. Muther, Systematic layout planning, Industrial Education Institute, Boston (1961).

    Google Scholar 

  36. H. Müller-Merbach, Optimale Reinhenfolgen (Springer, Berlin, 1970).

    Google Scholar 

  37. H. Müller-Merbach, “Letter to the Editor”, OR/MS TODAY 3 (4) (1976).

    Google Scholar 

    Google Scholar 

  38. C.E. Nugent, T.E. Vollmann and J. Ruml, “An experimental comparison of techniques for the assignment of facilities to locations”, Operations Research 16 (1968) 150–172.

    Article  Google Scholar 

  39. J.F. Pierce and W.B. Crowston, “Tree-search algorithms for quadratic assignment problems”, Naval Research Logistics Quarterly 18 (1971) 1–36.

    Article  MATH  Google Scholar 

  40. M. Scriabin and R.C. Vergin, “Comparison of computer algorithms and visual based methods for plant layout”, Management Science 22 (1975) 172–181.

    Article  Google Scholar 

  41. L. Steinberg, “The backboard wiring problem: a placement algorithm”, SIAM Review 3 (1961) 37–50.

    Article  MATH  MathSciNet  Google Scholar 

  42. K.-H. Stratmann, “Numerische Untersuchungen uber Quadratische Zuordnungsprobleme”, M.Sc. Thesis, Mathematisches Institut der Universität zu Köln, Köln (1976).

    Google Scholar 

  43. T.E. Vollmann and E.S. Buffa, “The facilities layout problem in perspective”, Management Science 12 (1965) 450–468.

    Google Scholar 

  44. T.E. Vollmann, C.E. Nugent and R.L. Zartler, “A computerized model for office layout”, Journal of Industrial Engineering 19 (1968) 321–329.

    Google Scholar 

  45. G.O. Wesolowsky and R.F. Love, “The optimal location of new facilities using rectangular distances”, Operations Research 19 (1971) 124–130.

    Article  MATH  MathSciNet  Google Scholar 

  46. G.O. Wesolowsky and R.F. Love, “A nonlinear approximation method for solving a generalized rectangular distance Weber problem”, Management Science 18 (1972) 656–663.

    Article  MATH  MathSciNet  Google Scholar 

  47. T. Willoughby, “A generative approach to computer planning, a theoretical proposal”, Computer Aided Design (1970) 29–37.

    Google Scholar 

  48. T. Willoughby, “A reasoned approach to the use of computers in building planning”, Notes méthodologiques en Architecture et Urbanisme, No. 2 Centre MMI, Institut de l’Environnement (1973) 89–154.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. L. Balinski C. Lemarechal

Rights and permissions

Reprints and permissions

Copyright information

© 1978 The Mathematical Programming Society

About this chapter

Cite this chapter

Krarup, J., Pruzan, P.M. (1978). Computer-aided layout design. In: Balinski, M.L., Lemarechal, C. (eds) Mathematical Programming in Use. Mathematical Programming Studies, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0120827

Download citation

  • DOI: https://doi.org/10.1007/BFb0120827

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00795-8

  • Online ISBN: 978-3-642-00796-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics