Nothing Special   »   [go: up one dir, main page]

Skip to main content

Parallel latice-Boltzmann simulation of fluid flow in centrifugal elutriation chambers

  • 2. Computational Science
  • Conference paper
  • First Online:
High-Performance Computing and Networking (HPCN-Europe 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1401))

Included in the following conference series:

Abstract

We present parallel lattice-Boltzmann simulations of fluid flow in a centrifugal elutriation chamber, a cell separation device for human blood cells. The critical factor in this separation technique is the hydrodynamic flow field. Understanding the influence of design parameters of a chamber on the flow field is important in optimizations of this process. Two different issues are considered in this paper: load balancing of the parallel lattice-Boltzmann simulations and preliminary simulations of fluid flow for a range of Reynolds numbers. It is shown that by exploiting appropriate load balancing strategies, such as the orthogonal recursive bisection method, the lattice-Boltzmann scheme is an efficient method for this application. Furthermore, 2D simulations confirm that the quality of separation degenerates above certain Reynolds numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.P. Barford. A mathematical model for cell separation technique of centrifugal elutration. Biotechnology and Bioengineering, XXVIII:570–577, 1986.

    Google Scholar 

  2. R.J. Sanderson, K.E. Bird, N.F. Palmer, and J. Brenman. Design principles for a counterflow centrifugal cell separation chamber. Analytical Biochemistry, 71:615–622, 1976.

    Google Scholar 

  3. P.M.A. Sloot, M.J. Carels, P. Tensen, and C.G. Figdor. Computer assisted centrifugal elutriation I:1 detection system and data acquisition equipment. Computer Methods and Programs in Biomedicine, 8:179, 1987.

    Google Scholar 

  4. P.M.A. Sloot, E.H.M. van der Donk, and C.G. Figdor. Computer assisted centrifugal elutriation II: Multiparametric statistical analysis. Computer Methods and Programs in Biomedicine, 27:37, 1988.

    Google Scholar 

  5. R. Benzi, S. Succy, and M. Vergassola. The lattice-boltzmann equation: Theory and applications. Physics Reports, 222(3):145–197, 1992.

    Google Scholar 

  6. S. Chen, Z. Wang, X. Shan, and G. Doolen. Lattice-boltzmann computational fluid dynamics in three dimensions. Journal of Statistical Physics, 68(3/4):379–400, 1992.

    Google Scholar 

  7. U. Frish, B. Hasslacher, and Y. Pomeau. Lattice-gas automata for the navier-stokes equation. Physical Review Letters, 56:1505, April 1986.

    Google Scholar 

  8. G.K. Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press, 1967.

    Google Scholar 

  9. A.J.C. Ladd. Numerical simulations of particulate suspensions via a discretized boltzmann equation. part 1. theoretical foundation. Journal of Fluid Mechanics, 271:285–309, January 1994.

    Google Scholar 

  10. D. Grunau, S. Chen, and K. Eggert. A lattice-boltzmann model for multiphase fluid flow. Phys. Fluids A, (5):2557–2562, 1993.

    Google Scholar 

  11. J.A. Kaandorp, C. Lowe, D. Frenkel, and P.M.A. Sloot. The effect of nutrient diffusion and flow on coral morphology. Phys. Rev. Lett., 77(11):2328–2331, 1996.

    Google Scholar 

  12. A. Koponen, D. Kandhai,, E.Héllen, M.Alava, A. Hoekstra, M. Kataja, K. Niskanen, P.M.A. Sloot, and J. Timonen. Permeability of three-dimensional random fibre webs. To appear in Phys. Rev. Lett..

    Google Scholar 

  13. P.A. Skordos. Parallel simulation of subsonic fluid dynamics on a cluster of workstations. In Proceedings of High Performance Distributed Computing 95, number 4th IEEE International Symposium, August 1995.

    Google Scholar 

  14. P. Giovanni, F. Massaioli, and S. Succi. High-resolution lattice-boltzmann computing on the IBM SP1 scalable parallel computer. Computers in Physics, 8(6):705, 1994.

    Google Scholar 

  15. D.R. Noble, S. Chen J.G. Georgiadis, and R.O. Buckius. A consistent hydrodynamic boundary condition for the lattice-boltzmann method. Physics of Fluids, 7(1):203–209, January 1995.

    Google Scholar 

  16. F.J. Higuera, S. Succi, and R. Benzi. Lattice gas dynamics with enhanced collision. Europhysics letters, 9:345–349, 1989.

    Google Scholar 

  17. Y.H. Qian, D.d'Humieres, and P. Lallemand. Lattice BGK models for the navierstokes equation. Europhysics letters, 17(6):479–484, 1992.

    Google Scholar 

  18. G.C. Fox, R.D. Williams, and P.C. Messina. Parallel Computing Works! Morgan Kaufmann Publishers, Inc., 1994.

    Google Scholar 

  19. J.F. de Ronde, A. Schoneveld, and P.M.A. Sloot. Load balancing by redundant decomposition and mapping. Future Generation Computer Systems, 12(5):391–406, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter Sloot Marian Bubak Bob Hertzberger

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kandhai, D., Dubbeldam, D., Hoekstra, A.G., Sloot, P.M.A. (1998). Parallel latice-Boltzmann simulation of fluid flow in centrifugal elutriation chambers. In: Sloot, P., Bubak, M., Hertzberger, B. (eds) High-Performance Computing and Networking. HPCN-Europe 1998. Lecture Notes in Computer Science, vol 1401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0037144

Download citation

  • DOI: https://doi.org/10.1007/BFb0037144

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64443-9

  • Online ISBN: 978-3-540-69783-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics