Preview
Unable to display preview. Download preview PDF.
References
S. Bergmann, Uber die Entwicklung der harmonischen Funktionen der Ebene und des Raumes nach Orthogonalfunktionen, Math. Annalen, 86 (1922), 238–271.
D. J. Jones and J. C. Smith, Application of the method of lines to the solution of elliptic partial differential equations (National Research Council of Canada, Ottawa 1979).
A. I. Markushevich, Theory of functions of a complex variable (Chelsea, New York, 1977)
Z. Nehari, On the numerical solution of the Dirichlet problem, Proceedings of the conference on differential equations held at the University of Maryland (1955), 157–178.
J. Walsh, The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions, Amer. Math. Soc. Bulletin, 35 (1929), 499–544.
S. Zaremba, L'equation biharmonique et une classe remarquable de fonctions fondementales harmoniques, Bulletin International de l'Academie des Sciences de Cracovie (1907), 147–196.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1984 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wilkerson, R.W. (1984). Symbolic computation and the Dirichlet problem. In: Fitch, J. (eds) EUROSAM 84. EUROSAM 1984. Lecture Notes in Computer Science, vol 174. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0032830
Download citation
DOI: https://doi.org/10.1007/BFb0032830
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-13350-6
Online ISBN: 978-3-540-38893-7
eBook Packages: Springer Book Archive