Preview
Unable to display preview. Download preview PDF.
References
D.A.BAYER, The division algorithm and the Hilbert scheme, Ph.D.Thesss,Harvard (1982)
B. BUCHBERGER, A criterion for detecting unnecessary reductions in the construction of Gröbner bases, Proc.EUROSAM 79, L.N.Comp.Sci. 72 (1979) 3–21
B.BUBHBERGER, A note on the complexity of constructing Gröbner bases, Proc.EUROCAL 83, L.N.Comp.Sci.162 (1983)
B.BUCHBERGER,F.WINKLER, Miscellaneous results on the construction of Gröbner bases for polynomial ideals,Bericht 137;Inst.Math.Univ.Linz (1979)
R. HARTSHORNE, Connectedness of the Hilbert scheme,Publ.Math.I.H.E.S. 29 (1966),5–48
G. HERMANN, Die Frage der endlichen viele Schritten in der Theorie der Polynomideale,Math.Ann. 95 (1926), 736–788
D.LAZARD, Gröbner bases,Gaussian elimination and resolution of systems of algebraic equations, Proc.EUROCAL 83, L.N.Comp.Sci. 162 (1983)
E.W. MAYR,A.R. MEYER, The complexity of the word problems for commutative semigroups and polynomial ideals, Adv.Math.46 (1982),305–329
J. RIORDAN, Combinatorial identities,Wiley, New York,(1968)
B.RENSCHUCH,Elementare und praktische Idealtheorie,DWV Berlin (1976)
M.GIUSTI, Some effectivity problems in polynomial ideal theory, these Proceedings
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1984 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Möller, H.M., Mora, F. (1984). Upper and lower bounds for the degree of Groebner bases. In: Fitch, J. (eds) EUROSAM 84. EUROSAM 1984. Lecture Notes in Computer Science, vol 174. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0032840
Download citation
DOI: https://doi.org/10.1007/BFb0032840
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-13350-6
Online ISBN: 978-3-540-38893-7
eBook Packages: Springer Book Archive