Abstract
Hereby we present the construction and usage of “Weak Connectiou”(WeCo) on Neural Networks(NN). We will show how these parallelization hypothesis increases the final system flexibility. The net design is based on standard procedures, but changed accordingly to WeCo parallelization principles. WeCo means parallelization with less weight on communication systems, as in: fine, medium and coarse grain parallelism, or between the parts of the implementation program. WeCo lays in-between parallel computers and sequential machines, building the bridge between them.
more specifically, Stock Exchange(SE) forecasting
Preview
Unable to display preview. Download preview PDF.
References
D.Dasgupta and D.R.McGregor,1992. Designing Application-Specific Neural Networks using the Structured Genetic Algorithm. Proceedings of COGANN-92 (Internat. Workshop on Comb. of Genetic Alg. and NN, June6,1992, Ed.Whitley and Schaffer, Publ.: IEEE Computer Society Press).
D.Komo, C.I.Chang and H.Ko,1994. Neural Network Technology for Stock Market Index Prediction. International Symposium on Speech, Image Processing and Neural Networks, 13–16 April 1994, HongKong, IEEE, pages 543–546.
M.Lam. Software Pipelining: An Effective Scheduling Technique for VLIW Machines. In Proc. ACM SIGPLAN, pp.318–328, l988.
Daniel E. Lenoski The Design and Analysis of Dash: A Scalable Directory-based Multiprocessor. PhD Thesis, Stanford University, CSL, 1992.
A.U.Levin, T.K.Leeu,J.E.Moody,1994. Fast Pruning Using Principal Components. Advances in Neural Information Processing 6, J.Cowau, G.Tesauro, J.Alspector, eds., Morgan Kaufmann, San Mateo, CA, 1994.
S. Mori and et al. A Distributed Shared Memory Multiprocessor: ASURA — Memory and Cache Architectures-. In Proc. Supercomputing 99, pp.740–749, 1993
N. Murata, S. Yoshizawa and S. Amari,1995. Network Information Criterion-Determining the Number of Hidden Units for an Artificial NN Model. Dept. of Mathematical Eng. and Info. Physics, Fac. of Engineering, Univ. of Tokyo,ftp-source.
M.E.Nelson, W.Furmanski, J.M.Bower,1989. Simulating Neurons and Networks on Parallel Computers. Methods in Neuronal Modeling, From Synapses to Networks, ed. C.Koch and I.Segev, MIT, 1989,chapt. 12.
C. Brownhill, A. Nicolau, S. Novack and C. Polychronopoulos The Promis Compiler. In Proc. PACT97, will appear, 1997
G.Thimm, E.Fiesler,1996. A Neural Network Construction Method based an Boolean Logic. accepted for IEEE International Conference on Tools with Artificial Intelligence proceedings, Toulose, France, 1996.
G.Thimm, E.Fiesler,1996. Neural Network Pruning and Pruning Parameters, 1st OWSC. http://www/bioele.nuee.nagoya-u.ae.jp/wsel, 1st Online Workshop on Soft Computing, Nagoya. Japan, 1996.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cristea, A.I., Okamoto, T. (1997). A parallelization method for neural networks with weak connection design. In: Polychronopoulos, C., Joe, K., Araki, K., Amamiya, M. (eds) High Performance Computing. ISHPC 1997. Lecture Notes in Computer Science, vol 1336. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0024235
Download citation
DOI: https://doi.org/10.1007/BFb0024235
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63766-0
Online ISBN: 978-3-540-69644-5
eBook Packages: Springer Book Archive