Nothing Special   »   [go: up one dir, main page]

Skip to main content

Rational function decomposition and Gröbner bases in the parameterization of plane curves

An extend abstract

  • Conference paper
  • First Online:
LATIN '92 (LATIN 1992)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 583))

Included in the following conference series:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abyankar,S. Algebraic Geometry for scientists and engineers. Math. Surveys and Monographs No35. America Math. Society. (1990)

    Google Scholar 

  • Abyankar, S.&Bajaj,C.: Automatic parameterization of rational curves and surfaces I. Comp. Aided Design 19, pp 11–14 (II,III y IV to appear) (1987)

    Google Scholar 

  • Barton,R.&Zippel, R.: Polynomial decomposition algorithms. J. of Symbolic Computation, 1, pp. 159–168 (1985)

    Google Scholar 

  • Bochnak, J.& Coste, M.& Roy, M-F.: Geometrie Algebrique reelle. Springer-Verlag (1987)

    Google Scholar 

  • Buchberger, B.: Applications of Gröbner Bases in non-linear Computational Geometry. Trends in Computer Algebra. Ed. R. Janssen. Lect. Notes in Comp. Sci. 296, 52–91 (1987)

    Google Scholar 

  • Cox,D.&Little.J.&O'Shea, D.: Ideals, Varieties and algorithms. “An Introduction to Computation in Algebraic Geometry and Commutative Algebra”. Dep. Math. South Hadley, Mass 01075, Book in preparation, Sept 1990.

    Google Scholar 

  • Dickerson, M.: The Functional Decomposittion of Polynomials. Tech. Rep. 89-1023, Dep. of Computer Science, Cornell University, Ithaca NY (1989)

    Google Scholar 

  • Fried, M. D. (1970). On a conjeture of Schur. Michigan Mth. J. 17, 41–50.

    Google Scholar 

  • Fried,M.&MacRae,R.: On the invariance of chains of fields. Illinois Journal Math. 13, pp. 165–171. (1969)

    Google Scholar 

  • Gathen, J. von zur.: Functional decomposition of polynomials: the tame case. J. Symbolic Computation 9, pp. 281–299 (1990)

    Google Scholar 

  • Gathen, J. von zur.: Functional decomposition of polynomials: the wild case. J. Symbolic Computation 10, pp. 437–452 (1990)

    Google Scholar 

  • Giesbrecht, M. W.: Complexity Results on the Functional Decomposition of Polynomials. Tech. Report 209/88. Dep. Computer Science. University of Toronto (1988)

    Google Scholar 

  • Gutierrez,J.: A polynomial Decomposition algorithm over Factorial Domains. Comptes Rendues Math. Acad. Sci. Canada. Vol. XIII, N-2 pp.81–86 (1991)

    Google Scholar 

  • Gutiérrez,J.& Recio, T. & Ruiz de Velasco, C.: Polynomial Decomposition algorithm of almost quadratic complexity. Proc. of AAECC-6 (1988) L.N.Comp.Science, 357. Springer-Verlag, 471–476(1989)

    Google Scholar 

  • Kalkbrener, M.: Three Contributions to Elimination Theory. Dissertation. Univ. of Linz, Austria, (Mai, 1991)

    Google Scholar 

  • Kozen, D. & Landau, S.: Polynomial Decomposition Algorithms. Tech.Rep. 86-773, Dep.Comp.Scienc, Cornell University, Ithaca NY(1986). J. Symbolic Computation 7, 445–456 (1989)

    Google Scholar 

  • Lüroth,P.: Beweis eines Satzes über rationale Curven. Math. Annalen, 9pp. 163–165. (1876)

    Google Scholar 

  • Netto,E.: Über einen Lüroth-Gordaschen Satz. Math. Annals, 46. pp. 310–318. (1895)

    Google Scholar 

  • Recio, T.: Curso de Algebra Computacional. Cursos de Laredo. Univ. de Cantabria, Spain (July 1990)

    Google Scholar 

  • Ritt, F.: Prime and composite polynomials. Trans. Amer. Math. Soc. 23, pp. 51–66. (1922)

    Google Scholar 

  • Shafarevich,I.R.: Basic algebraic Geometry. Springer-Verlag. Berlin-NY (1977)

    Google Scholar 

  • Sederberg, T. W.: Improperly parametrized rational curves. Computer Aided Geometric Design 367–75 (1986).

    Google Scholar 

  • Sederberg, T.W.: Algebraic Geometry for Durface and Solid Modeling. Geometric Modeling Algorithms and new trends. SIAM, Ed. Gerald E. Farm pp. 29–42 (1987).

    Google Scholar 

  • Sendra,R.&Winkler,F.: Symbolic Parameterization of Curves. To appear in J. of Symbolic Computation. (1990).

    Google Scholar 

  • Shannon, D. & Sweedler, M.: Using Gröbner bases to determine algebra membership, split surjective algebra hommorfhisms and determine birational equivalence. J. of Symbolic Computation 6, pp. 267–273 (1988)

    Google Scholar 

  • Schinzel, A.: Selected Topics on polynomials. Ann. Arbor, University of Michigan Press, (1982).

    Google Scholar 

  • Zippel, R.: Rational Functional Decompostion. Proc. of ISSAC-91. Bonn. ACM press (1991)

    Google Scholar 

  • Zippel, R.: Function Decomposition. Tech. Report 91-1209. Dep. Computer Science. Cornell UNiversity. Ithaca (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Imre Simon

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gutierrez, J., Recio, T. (1992). Rational function decomposition and Gröbner bases in the parameterization of plane curves. In: Simon, I. (eds) LATIN '92. LATIN 1992. Lecture Notes in Computer Science, vol 583. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0023832

Download citation

  • DOI: https://doi.org/10.1007/BFb0023832

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55284-0

  • Online ISBN: 978-3-540-47012-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics