Abstract
A new method for performing a nonlinear form of Principal Component Analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all possible d-pixel products in images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Preview
Unable to display preview. Download preview PDF.
References
M. A. Aizerman, E. M. Braverman, & L. I. Rozonoér. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control, 25:821–837, 1964.
B. E. Boser, I. M. Guyon, & V Vapnik. A training algorithm for optimal margin classifiers. In Fifth Annual Workshop on COLT, Pittsburgh, 1992. ACM.
C. Cortes & V. Vapnik. Support vector networks. Machine Learning, 20:273–297, 1995.
T. Hastie & W. Stuetzle. Principal curves. JASA, 84:502–516, 1989.
M. Kirby & L. Sirovich. Application of the Karhunen-Loève procedure for the characterization of human faces. IEEE Transactions, PAMI-12(1):103–108, 1990.
E. Oja. A simplified neuron model as a principal component analyzer. J. Math. Biology, 15:267–273, 1982.
B. Schölkopf, C. Burges, & V. Vapnik. Extracting support data for a given task. In U. M. Fayyad & R. Uthurusamy, eds., Proceedings, First International Conference on Knowledge Discovery & Data Mining, Menlo Park, CA, 1995. AAAI Press.
B. Schölkopf, C. Burges, & V. Vapnik.Incorporating invariances in support vector learning machines. In C. v. d. Malsburg, W. v. Seelen, J. C. Vorbrüggen, & B. Sendhoff, eds., ICANN'96, p. 47–52, Berlin, 1996. Springer LNCS Vol. 1112.
B. Schölkopf, A. J. Smola, & K.-R. Müller Nonlinear component analysis as a kernel eigenvalue problem. Technical Report 44, Max-Planck-Institut fur biologische Kybernetik, 1996. Submitted to Neural Computation.
P. Simard, Y. LeCun. & J. Denker. Efficient pattern recognition using a new transformation distance. In S. J. Hanson, J. D. Cowan, & C. L. Giles, editors, Advances in NIPS 5, San Mateo, CA, 1993. Morgan Kaufmann.
V. Vapnik & A. Chervonenkis. Theory of Pattern Recognition [in Russian]. Nauka, Moscow, 1974. (German Translation: W. Wapnik & A. Tscherwonenkis, Theorie der Zeichenerkennung, Akademie-Verlag, Berlin, 1979).
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schölkopf, B., Smola, A., Müller, KR. (1997). Kernel principal component analysis. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020217
Download citation
DOI: https://doi.org/10.1007/BFb0020217
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63631-1
Online ISBN: 978-3-540-69620-9
eBook Packages: Springer Book Archive