Nothing Special   »   [go: up one dir, main page]

Skip to main content

Some applications of representations of lie algebras and lie groups

  • Low Level and Early Vision
  • Conference paper
  • First Online:
Algebraic Frames for the Perception-Action Cycle (AFPAC 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1315))

  • 136 Accesses

Abstract

The paper gives a short overview over some basic facts from the representation theory of groups and algebras. Then we describe iterative algorithms to normalize coefficient vectors computed by expanding functions on the unit sphere into a series of spherical harmonics. Typical applications of the normalization procedure are the matching of different three-dimensional images, orientation estimations in low-level image processing or robotics. The algorithm illustrates general methods from the representation theory of Lie-groups and Lie-algebras which can be used to linearize highly-non-linear problems. It can therefore also be adapted to applications involving groups different from the group of three-dimensional rotations. The performance of the algorithm is illustrated with a few experiments involving random coefficient vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. M. Atakishiyev, S. M. Chumakov, and K. B. Wolf. Wigner distribution functions for finite systems. Technical report, IIMAS, UNAM, Mexico, 1997.

    Google Scholar 

  2. N. M. Atakishiyev and K. B. Wolf. Fractional Fourier Kravchuk transform. Technical report, IIMAS, UNAM, Mexico, 1996.

    Google Scholar 

  3. L. C. Biedenharn. Angular momentum in quantum physics, volume 8 of Encyclopedia of mathematics and its applications. Addison-Wesley Publishing Company, Reading, Massachusetts, 1984.

    Google Scholar 

  4. Gilles Burel and Hugues Henocq. Determination of the orientation of 3d objects using spherical harmonics. CVGIP-Graphical Models and Image Processing, 57(5):400–408, 1995.

    Article  Google Scholar 

  5. Gilles Burel and Hugues Henocq. Three-dimensional invariants and their application to object recognition. Signal Processing, 45:1–22, 1995.

    Article  Google Scholar 

  6. Per-Erik Danielsson. Orientation and shape from second derivatives in 3d volume data. Technical Report LiTH-ISY-R-1696, Dept. EE, Linköping University, S58183 Linköping, October 1994.

    Google Scholar 

  7. Per-Erik Danielsson. Analysis of 3d volume data using 2nd derivatives. In Proceedings DICTA-95, Brisbane, pages 14–19, 1995.

    Google Scholar 

  8. J.E. Dennis and R.B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, 1983.

    Google Scholar 

  9. W. T. Freeman and E. H. Adelson. The design and use of steerable filters for image analysis. IEEE Transactions on Pattern Analysis and Machine, 13(9):891–906, September 1991.

    Article  Google Scholar 

  10. I. M. Gelfand, R. A. Minlos, and Z. Y. Shapiro. Representations of the rotation and Lorentz groups and their applications. Pergamon Press, 1963.

    Google Scholar 

  11. M. Hamermesh. Group Theory and Its Applications to Physical Problems. Addison-Wesley, 1962.

    Google Scholar 

  12. H. Härtl. Darstellungstheorie in der Bildverarbeitung mit Schwerpunkt in der Bewegungsanalyse. PhD thesis, Universität Karlsruhe, 1991.

    Google Scholar 

  13. Y. Hel-Or and P. C. Teo. A common framework for steerability, motion estimation and invariant feature detection. Technical report, Dept. CS. Stanford, 1996. STANCS-TN-96-28.

    Google Scholar 

  14. Ken-Ichi Kanatani. Group Theoretical Methods in Image Understanding. Springer Verlag, 1990.

    Google Scholar 

  15. R. Lenz. Optimal filters for the detection of linear patterns in 2-D and higher dimensional images. Pattern Recognition, 20(2):163–172, 1987.

    Article  Google Scholar 

  16. Reiner Lenz. Group-invariant pattern recognition. Pattern Recognition, 23(1/2):199–218, 1990.

    Article  MathSciNet  Google Scholar 

  17. Reiner Lenz. Group Theoretical Methods in Image Processing. Lecture Notes in Computer Science (Vol. 413). Springer Verlag, Heidelberg, Berlin, New York, 1990.

    Google Scholar 

  18. M. Michaelis and Gerald Sommer. A Lie group approach to steerable filters. Pattern Recognition Letters, 16:1165–1174, 1995.

    Article  Google Scholar 

  19. M. A. Naimark and A. I. Stern. Theory of Group Representations. Springer Verlag, New York, Heidelberg, Berlin, 1982.

    Google Scholar 

  20. Joseph Segman, Jacob Rubinstein, and Yehoshua Zeevi. The canonical coordinates method for pattern deformation: Theoretical and computational considerations. IEEE Transactions on Pattern Analysis and Machine, 14(12):1171–1183, December 1992.

    Article  Google Scholar 

  21. Ramachandra Ganesh Shenoy. Group Representations and Optimal Recovery in Signal Modeling. PhD thesis, Cornell University, 1991.

    Google Scholar 

  22. S. Sternberg. Group Theory and Physics. Cambridge University Press, Cambridge, England, first paperback edition edition, 1995.

    Google Scholar 

  23. J. Stuelpnagel. On the parametrization of the three-dimensional rotation group. SIAM Review, 6(4):422–430, 1964.

    Article  Google Scholar 

  24. N.Ja. Vilenkin and A.U. Klimyk. Representation of Lie groups and special functions. Mathematics and its applications: 72. Kluwer Academic, 1991–1993.

    Google Scholar 

  25. D. P. Zelobenko. Compact Lie Groups and their Representations. American Mathematical Society, Providence, Rhode Island, 1973.

    Google Scholar 

  26. Steven W. Zucker and Robert A. Hummel. A three-dimensional edge operator. IEEE Transactions on Pattern Analysis and Machine, 3(3):324–331, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gerald Sommer Jan J. Koenderink

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lenz, R. (1997). Some applications of representations of lie algebras and lie groups. In: Sommer, G., Koenderink, J.J. (eds) Algebraic Frames for the Perception-Action Cycle. AFPAC 1997. Lecture Notes in Computer Science, vol 1315. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0017863

Download citation

  • DOI: https://doi.org/10.1007/BFb0017863

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63517-8

  • Online ISBN: 978-3-540-69589-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics