Abstract
We show that every planar graph with n vertices and a maximal degree k has an 0(√kn)-edge separator. This improves known results about edge separators of graphs with vertex degree bounded by a constant. We show that any n vertex tree of a maximal degree k can be divided into two parts of ≤ n / 2 vertices by removing 0(klog n/log k) edges. The sizes of both separators are existentially optimal. We apply the edge separator to average cost efficient embeddings of planar graphs of degree k into binary trees, meshes and hypercubes.
Preview
Unable to display preview. Download preview PDF.
References
F. Berman, L. Snyder, On mapping parallel algorithms into parallel architectures, J. of Parallel and Distributed Computing, Vol.4, 1987, pp. 439–458.
H.N. Djidjev, On the problem of partitioning planar graphs, SIAM J. Alg. Disc. Meth., Vol. 3, No. 2, 1982, pp.229–240.
H.N. Djidjev, A Linear algorithm for partitioning graphs of fixed genus, SERDICA, Vol. 11, 1985, 369–387.
H.N. Djidjev, A separator theorem for graphs of fixed genus, SERDICA, Vol. 11, 1985, pp. 319–329.
R.A. De Millo, S.C. Eisenstat, R.J.L. Lipton, Preserving average proximity in arrays, Comm. ACM, 21, 1978, pp. 228–230.
H.Gazit, An improved algorithm for separating planar graphs, manuscript.
J.R.Gilbert, J.P.Hutchinson, R.E.Tarjan, A separator theorem for graphs of bounded genus, Journal of Algorithsm, No.5, 1984, pp. 391–398.
J.R.Gilbert, Graph separator theorem and sparse Gaussian elimination, Ph.D. thesis, Stanford University, 1980.
H.Gazit, G.L.Miller, A parallel algorithm for finding a separator for planar graphs. In: Proc. 28-th. Foundations of Computer Science, IEEE, 1987, 238–248.
L.S. Heath, Embedding outerplanar graphs in small books, SIAM J. Alg. Disc. Meth., Vol.8, No.2, 1987, pp. 198–218.
J. Hong, A.L. Rosenberg, Graphs that are almost binary trees, SIAM J. Comput., Vol. 11, No. 2, 1982, pp. 227–242.
M.A. Jordanskij, Minimal numberings of tree vertices, Probl. Kib., Vol. 31, 1976, pp.109–133 (in Russian).
D.B. Johnson, S.M. Venkatesan, Partition of planar flows in networks. In: Proc. 24-th Ann. Symp. on Theory of Computing, ACM, New York, 1983, pp. 259–263.
R.J. Lipton, D.J. Rose, R.E. Tarjan, Generalized nested dissection, SIAM J. Numer. Anal., 16, 1979, 346–358.
C.E.Leiserson, Area efficient graph layout (for VLSI), In: Proc. 21-st Foundations of Computer Science, IEEE, Syracuse, 1980, pp. 270–281.
F.T. Leighton, A layout strategy which is provably good, In: Proc. 23-rd Foundations of Computer Science, IEEE, San Francisco, 1982, pp. 85–98.
R.J. Lipton, R.E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math., Vol. 36, No. 2, 1979, pp. 177–189.
R.J. Lipton, R.E. Tarjan, Applications of a planar separator theorem, SIAM J. Computing, Vol. 9, No.3, 1980, pp. 615–627.
G.L. Miller, Finding small simple cycle-separators for 2-connected planar graphs, J. of Comp. and System Science, Vol. 32, 1986, pp. 265–279.
B.Monien, The complexity of embedding graphs into binary trees, In: FCTo 85, LNCS 199, pp. 300–309.
S. Mitchel, Linear algorithm to recognize outerplanar and maximal outerplanar graphs, IPL, Vol. 9, No.5, 1979, pp.229–232.
S.Rao, Finding near optimal separators in planar graphs, In: Proc. 28-th Foundations of Computer Science. IEEE, 1987, pp. 225–237.
S.S. Ravi, H.B. Hunt, An application of the planar separator theorem to counting problem, IPL, Vol. 25, No.6, 1987, pp.317–322.
D. Richards, Finding short cycles in planar graphs using separators, J. of Algorithms, Vol. 7, 1986, pp. 382–394.
A.L. Rosenberg, A hypergraph model for fault-tolerant VLSI processor arrays, IEEE Trans. on Computers, C-34, No. 6, 1985, pp. 578–584.
M.A. Scheidwasser, On the length and the width of embeddings of graphs in meshes, Probl. Kib., Vol. 29, 1974, pp.63–102 (in Russian).
J.G. Valiant, Universality consideration in VLSI circuits, IEEE Trans. on Computers, C-30, No.2, 1981, pp. 135–140.
S.M.Venkatesan, Improved constants for some separator theorems, J. of Algorithms, to appear.
S.M.Venkatesan, On separating a planar graph into two halves, Submitted to SIAM J. of Discrete Mathematics.
M. Yannakakis, Linear and book embeddings of graphs, in: Proc. Aegean Workshop on Computing, July 8–11, 1986, Lecture Notes in Computer Science, Vol. 227, Springer-Verlag, Berlin, 1986.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1988 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Diks, K., Djidjev, H.N., Sykora, O., Vrto, I. (1988). Edge separators for planar graphs and their applications. In: Chytil, M.P., Koubek, V., Janiga, L. (eds) Mathematical Foundations of Computer Science 1988. MFCS 1988. Lecture Notes in Computer Science, vol 324. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0017151
Download citation
DOI: https://doi.org/10.1007/BFb0017151
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-50110-7
Online ISBN: 978-3-540-45926-2
eBook Packages: Springer Book Archive