Nothing Special   »   [go: up one dir, main page]

Skip to main content

Linear modal deductions

  • Conference paper
  • First Online:
9th International Conference on Automated Deduction (CADE 1988)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 310))

Included in the following conference series:

Abstract

We present a deduction method for propositional modal logics. It is based on a resolution principle for formulas written in a very simple normal form, close to the clausal form for classical logic. It allows us to extend naturally resolution and refinements of resolution to modal logics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5 References

  1. Abadi M., Manna Z. Modal theorem proving. 8CAD, LNCS, Springer-Verlag 1986, pp 172–186.

    Google Scholar 

  2. Auffray Y., Enjalbert P., Hebrard J.J., Strategics for modal resolution: results and problems. Rapport du Laboratoire d'Informatique de Caen, 1987.

    Google Scholar 

  3. Balbiani Ph., Fariñas del Cerro L., Herzig A., Declarative semantics for modal logic programs. Rapport LSI, November 1987.

    Google Scholar 

  4. Bieber P., Cooperating with untrusted agents. Rapport LSI, UPS, 1988.

    Google Scholar 

  5. Cialdea M., Une méthode de déduction automatique en logique modale. Thèse Université Paul Sabatier, Toulouse, 1986.

    Google Scholar 

  6. Enjalbert P., Fariñas del Cerro L., Modal resolution in clausal form, Theoretical Computer Sciences, to appear.

    Google Scholar 

  7. Fariñas del Cerro L., A simple deduction method for modal logic. Information Processing Letter 14, 1982.

    Google Scholar 

  8. Fariñas del Cerro L., Herzig A., Quantified modal logic and unification theory. Rapport LSI, UPS, 1988.

    Google Scholar 

  9. Fariñas del Cerro L., Orlowska. E., Automated reasoning in non classical logic. Logique et Analyse, no 110–111, 1985.

    Google Scholar 

  10. Fitting M.C., Proof methods for modal and intuitionistic logics. Methuen & Co., London 1986.

    Google Scholar 

  11. Hughes G.E., Cresswell M.J., A companion to Modal Logic, Methuen & Co. Ltd., London 1986.

    Google Scholar 

  12. Konolige K., Resolution and quantified epistemic logics. 8CAD, LNCS, Springer-Verlag 1986, pp199–209.

    Google Scholar 

  13. Konolige K., A deductive model of belief and its logics. Ph.D. Thesis, Computer Sciences Department, Stanford University 1984.

    Google Scholar 

  14. Mints G., Resolution calculi for modal logics. Proc. of the Academy of Estonian SSR, 1986 (in russian).

    Google Scholar 

  15. Ohlbach H.J., A resolution calculus for modal logics. Report University of Kaiserslautern, 1987.

    Google Scholar 

  16. Wallen L.A., Matrix proof methods for modal logics. In Proc. of 10th ICALP, 1987.

    Google Scholar 

  17. Wrightson, G., Non-classical theorem proving. Journal of automated Reasoning, 1,35–37, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ewing Lusk Ross Overbeek

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

del Cerro, L.F., Herzig, A. (1988). Linear modal deductions. In: Lusk, E., Overbeek, R. (eds) 9th International Conference on Automated Deduction. CADE 1988. Lecture Notes in Computer Science, vol 310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0012851

Download citation

  • DOI: https://doi.org/10.1007/BFb0012851

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19343-2

  • Online ISBN: 978-3-540-39216-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics