Abstract
A neural network model with incremental Hebbian learning of afferent and lateral synaptic couplings is proposed, which simulates the activity-dependent self-organization of grating cells in upper layers of striate cortex. These cells respond vigorously and exclusively to bar gratings of a preferred orientation and periodicity. Response behavior to varying contrast and to an increasing number of bars in the grating shows threshold and saturation effects. Their location with respect to the underlying orientation map and their formation relative to each other. The number of emerging grating cells is controlled by the range and strength of the lateral coupling structure.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
[B+98] Brunner K, Kussinger M, Stetter M, Lang EW (1998) A Neural Network Model for the Emergence of Grating Cells. Biol Cybern 78:389–397
[BBL98] Bauer C, Burger T, Lang EW (1998) Ein neuronales Netzwerkmodell zur Selbstorganisation von Grating-Zellen in höheren Schichten des visuellen Kortex. Verhandl. DPG (VI) 33:641
[BO94] Blasdel GG, Obermayer K (1994) Putative Strategies of Scene Segmentation in Monkey Visual Cortex. Neural Networks 7:865–881
[BL98] Burger T, Lang EW (1998) An incremental Hebbian learning model of the primary visual cortex with lateral plasticity and real input patterns. Z Naturforsch (in press)
[KSJ96] Kandel ER, Schwartz JH and Jessell TM (eds) (1996) Neurowissenschaften. Spektrum Akademischer Verlag, Heidelberg
[HPD92] Von der Heydt R, Peterhans E, Dürsteler MR (1992) Periodic-Patternselective Cells in Monkey Visual Cortex. J Neurosci 12(4): 1416–1434
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bauer, C., Burger, T., Lang, E.W. (1999). A neural network model for the self-organization of cortical grating cells. In: Mira, J., Sánchez-Andrés, J.V. (eds) Foundations and Tools for Neural Modeling. IWANN 1999. Lecture Notes in Computer Science, vol 1606. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0098200
Download citation
DOI: https://doi.org/10.1007/BFb0098200
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66069-9
Online ISBN: 978-3-540-48771-5
eBook Packages: Springer Book Archive