Abstract
An analysis for stochastic convergence of the modified Oja-RLS learning rule is presented. The rule is used to find Karhunen Loeve Transform. Based on this algorithm, an image compression scheme is developed by combining approximated 2D KLT transform and JPEG standard quantization and entropy coding stages.
Preview
Unable to display preview. Download preview PDF.
References
Cichocki A., Kasprzak W., Skarbek W.: Adaptive learning algorithm for Principal Component Analysis with partial data. Proceedings of 13-th European Meeting on Cybernetics and Systems Research. Austrian Society for Cybernetic Studies, Vienna, Austria (1996) 1014–1019
Diamantaras K.I., Kung S.Y.: Principal component neural networks—theory and applications. John Wiley & Sons, Inc. (1995).
Duflo M.: Random iterative models. Springer (1997)
Pennebaker, W.B. and Mitchell, J.L.: JPEG Still Image Data Compression Standard. Prentice-Hall (1995)
Oja, E.: A simplified neuron model as a principal component analyzer. Journa of Mathematical Biology. 15 (1982) 267–273
Sikora, R. and Skarbek, W.: On stability of Oja algorithm. In: Polkowski, L., Skowron, A. (eds.): Rough Sets and Current Trends in Computing. Lecture Notes in Artificial Intelligence, Vol. 1424. Springer (1998) 354–360
Sikora, R., Skarbek, W.: Stability Analysis of Oja-RLS Learning Rule. Fundamenta Informaticae. 34 (1998) 441–453
Skarbek, W., Pietrowcew, A. and Sikora, R.: The Modified Oja-RLS Algorithm, Stochastic Convergence Analysis and Application for Image Compression, Fundamenta Informaticae. 36 (1999) xxx–yyy
Skarbek, W.: Local Principal Components Analysis for Transform Coding. In: Nagashino H. (ed.): Proceedings of 1996 International Symposium on Nonlinear Theory and its Applications. IEICE, Kochi, Japan, (1996) 381–384
Skarbek, W., Ghuwar, M., Ignasiak, K.: Local subspace method for pattern recognition. Sommer, G., Daniilidis, K., Pauli, J. (eds.): Computer Analysis of Images and Patterns. Lecture Notes in Computer Science, Vol. 1296. Springer (1997) 527–534
Skarbek, W., Ignasiak, K.: Handwritten digit recognition by local principal components analysis. In: Ras, Z.W., Skowron, A. (eds.): Foundations of Intelligent Systems. Lecture Notes in Artificial Intelligence, Vol. 1325. Springer (1997) 217–226
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Skarbek, W., Pietrowcew, A., Sikora, R. (1999). Modified Oja-RLS algorithm—Stochastic convergence analysis and application for image compression. In: Raś, Z.W., Skowron, A. (eds) Foundations of Intelligent Systems. ISMIS 1999. Lecture Notes in Computer Science, vol 1609. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0095127
Download citation
DOI: https://doi.org/10.1007/BFb0095127
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-65965-5
Online ISBN: 978-3-540-48828-6
eBook Packages: Springer Book Archive