Abstract
We review some approaches to qualitative uncertainty and propose a new one based on the idea of Absolute Order of Magnitude. We show that our ideas can be useful for Knowledge Discovery by introducing a derivation of the Naive-Bayes classifier based on them: the Qualitative Bayes Classifier. This classification method keeps Naive-Bayes accuracy while gaining interpretability, so we think it can be useful for the Data Mining step of the Knowledge Discovery process.
Chapter PDF
References
Christopher Elsaesser. Explanation of probabilistic inference. In L. N. Kanal, T. S. Levitt, and J. F. Lemmer, editors, Uncertainty in Artificial Intelligence 3, pages 387–400. Elsevier Science Publishers B.V. (North-Holland), 1989.
Jerome H. Friedman. On Bias, Variance, 0/1-Loss, and the Curse-of-Dimensionality. Data Mining and Knowledge Discovery, 1:55–77, 1997.
Edgard M. Johnson. Numerical encoding of qualitative expressions of uncertainty. Technical Report 250, Army Research Institute for the Behavioural and Social Sciences, Arlington, Virginia, 1973.
R. Kohavi, G. John, R. Long, D. Manley, and K. Pfleger. MLC++: A machine learning library in C++. In Tools with Artificial Intelligence, pages 740–743. IEEE Computer Society Press, 1994.
Pat Langley, Wayne Iba, and Kevin Thompson. An Analysis of Bayesian Classifiers. In Proceedings of the Tenth National Conference on Artificial Intelligence, pages 223–228. AAAI Press and MIT Press, 1992.
S. Lichtenstein and J. R. Newman. Empirical scaling of common verbal phrases associated with numerical probabilities. Psychon. Sci., 9(10), 1967.
Eric Neufeld. A probabilistic commonsense reasoner. International Journal of Intelligent Systems, 5:565–594, 1990.
G. C. Oden: Integration of fuzzy logical information. Journal of Experimental Psychology: Human Perception and Performance, 3(4):565–575, 1977.
Simon Parsons. Further results in qualitative uncertainty. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 3(2):187–210, 1995.
George Polya. Mathematics and Plausible Reasoning, Vol. II: Patterns of Plausible Inference. Princeton, New Jersey: Princeton University Press, 1954.
L. Trave and N. Piera. The orders of magnitude models as qualitative algebras. In 11th IJCAI, Detroit, 1989.
T. S. Wallsten, D. V. Budescu, A. Rapoport, R. Zwick, and B. Forsyth. Measuring the vague meanings of probability terms. Technical Report 173, The L. L. Thurstone Psychometrich Laboratory, Chapel Hill, N.C., 1985.
Michael P. Wellman. Fundamental concepts of qualitative networks. Artificial Intelligence, 44:257–303, 1990.
Alf C. Zimmer. Verbal vs. numerical processing of subjective probabilities. In R. W. Scholz, editor, Decision Making Under Uncertainty, pages 159–182. Elsevier Science Publishers B.V. (North-Holland), 1983.
Alf C. Zimmer. The estimation of subjective probabilities via categorical judgments of uncertainty. In Proceedings of the Workshop on Uncertainty and Probability in Artificial Intelligence, pages 217–224. UCLA, 1985.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cerquides, J., de Màntaras, R.L. (1998). Knowledge Discovery with qualitative influences and synergies. In: Żytkow, J.M., Quafafou, M. (eds) Principles of Data Mining and Knowledge Discovery. PKDD 1998. Lecture Notes in Computer Science, vol 1510. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0094829
Download citation
DOI: https://doi.org/10.1007/BFb0094829
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-65068-3
Online ISBN: 978-3-540-49687-8
eBook Packages: Springer Book Archive