Abstract
Graph editing problems deal with the complexity of transforming a given input graph G from class Q to any graph H in the target class H by adding and deleting edges. Motivated by a physical mapping scenario in Computational Biology, we consider graph editing to the class of bipartite interval graphs (BIGs). We prove asymptotic and exact bounds on the minimum number of editions needed to convert a graph into a BIG.
Work supported by DIMACS Special Year on Computational Biology.
Preview
Unable to display preview. Download preview PDF.
References
T. Andrae and M. Aigner. The total interval number of a graph. J. Comb. Theory, Series B, 46, 7–21, 1989.
F. Alizadeh, R.M. Karp, D.K. Weisser, G. Zweig, Physical Mapping of Chromosomes Using Unique Probes, J. Comp. Bio., 2(2):153–158, 1995.
S. Arnborg, A. Proskurowski, Linear Time Algorithms for NP-Hard Problems Restricted to Partial k-Trees, Discrete Applied Mathematics, 23:11–24, 1989.
H. Bodlaender. A tourist guide through treewidth. Manuscript, 1995.
H. Bodlaender, M. Fellows, M. Hallet, T. Wareham and T. Warnow. The hardness of problems on thin colored graphs. Manuscript, 1995.
H. Bodlaender, and B. de Fluiter. Intervalizing k-colored graphs. Proc. ICALP, 1995. Also, see http://www.cs.ruu.nl/~hansb/mypapers2.html for the journal version.
H. Bodlaender, M. Fellows, and M. Hallet. Beyond the NP Completeness for problems of bounded width. Proc. STOC, 449–458, 1994.
K. Booth and G. Leuker. Testing for the consecutive ones property, interval graphs and graph planarity using PQ algorithms. J. Comput. Syst. Sciences, 13, 335–379, 1976.
N. G. Cooper(editor). The Human Genome Project — Deciphering the Blueprint of Heredity, University Science Books, Mill Valley, California, 1994.
P. Cresenzi and V. Kann. The NP Completeness Compendium. See Section on Subgraphs and Supergraphs. http://www.nada.kth.se/viggo/problemlist/compendium.
M. Farach, S. Kannan and T. Warnow. A robust model for constructing evolutionary trees. Proc. STOC, 1994.
M. Fellows, M. Hallet and T. Wareham. DNA Physical Mapping: three ways difficult. Proc. First ESA, 157–168, 1993.
P.W. Goldberg, M.C. Golumbic, H. Kaplan, R. Shamir, Four Strikes Against Physical Mapping of DNA, J. Comp. Bio., 2(1):139–152, 1995.
M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of N P-Completeness, p 199–200. (Freeman, San Fransisco, CA, 1979)
M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980.
M. Golumbic, H. Kaplan and R. Shamir On the complexity of DNA physical mapping. Adv. Appl. Math., 15:251–261, 1994.
H. Kaplan and R. Shamir. Pathwidth, bandwidth and completion problems to proper interval graphs with small cliques. To appear in SIAM. J. Computing, 1996.
H. Kaplan and R. Shamir. Physical mapping and interval sandwich problems: Bounded degrees help. Manuscript, 1996.
H. Kaplan, R. Shamir and R. Tarjan. Tractability of parameterized completion problems on chordal and interval graphs: Minimum fill-in and physical mapping. Procs. of FOCS, 1994.
R. Karp, Mapping the Genome: Some Combinatorial Problems Arising in Molecular Biology, 25th ACM STOC, 1993.
P. Pevzner, M. Waterman. Open Combinatorial Problems in Computational Molecular Biology, Proceedings of the Third Israel Symposium on Theory of Computing and Systems, Jan 4–6, 1995, Tel Aviv, Israel.
J. Rose. A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations. Reed Eds. Graph Theory and Computing, 183–217, Academic Press, NY, 1972.
M. Waterman, J. R. Griggs, Interval Graphs and Maps of DNA, Bull. of Math. Biol., 48:189–195, 1986.
M. Yannakakis. Computing the minimum fill-in is NP-Complete. SIAM J. ALg. Disc. Methods, 2, 1981.
C. Wang. A subgraph problem from restriction maps of DNA chain. Journal of Computational Biology, 1995.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cirino, K., Muthukrishnan, S., Narayanaswamy, N.S., Ramesh, H. (1997). Graph editing to bipartite interval graphs: Exact and asymptotic bounds. In: Ramesh, S., Sivakumar, G. (eds) Foundations of Software Technology and Theoretical Computer Science. FSTTCS 1997. Lecture Notes in Computer Science, vol 1346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0058021
Download citation
DOI: https://doi.org/10.1007/BFb0058021
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63876-6
Online ISBN: 978-3-540-69659-9
eBook Packages: Springer Book Archive