Abstract
In this paper, a new syntax-based approach to belief revision is presented. It is developed within a nonmonotonic framework that allows a two-steps handling of inconsistency to be adopted. First, a disciplined use of non-monotonic ingredients is made available to the knowledge engineer to prevent many inconsistencies that would occur if a standard logical interpretation and representation of beliefs were conducted. Remaining inconsistencies are considered unexpected and revised by weakening the formulas occurring in any minimally inconsistent subbase, as if they were representing exceptional cases that do not actually occur. While the computation of revised knowledge bases remains intractable in the worst case, our approach benefits from an efficient local search-based heuristic technique that empirically proves often viable, even in the context of very large prepositional applications.
Preview
Unable to display preview. Download preview PDF.
References
Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet functions for contraction and revision. Journ. of Symbolic Logic, vol. 50, pp. 510–530 (1985)
Benfherat, S., Dubois, D., Prade, H.: How to infer from inconsistent beliefs without revising. Proc. IJCAI-95, pp. 1449–1455 (1995)
Cadoli, M., Donini, F., Liberatore, P., Schaerf, M.: The size of a revised knowledge base. Proc. PODS-95, pp. 151–162 (1995)
Darwiche, A., Pearl, J.: On the logic of iterated belief revision. Artificial Intelligence, vol. 89, pp. 1–30 (1997)
del Val, A.: On the relation between the coherence and foundations theories of belief revision. Proc. AAAI-94, pp. 909–914 (1994)
DIMACS 93: Second SAT challenge organized by the Center for Discrete Mathematics and Computer Science of Rutgers University (1993)
Eiter, T., Gottlob, G.: On the complexity of prepositional knowledge base revision, updates, and counterfactual. Artificial Intelligence, vol. 57, pp. 227–270 (1992)
Fagin, R., Ullman, J.D., Vardi, M.Y.: On the semantics of updates in databases. Proc. PODS-83, pp. 352–365 (1983)
Friedman, N., Halpern, J.Y.: Belief revision: a critique. Proc. KR'96, pp. 429–431 (1996)
Gärdenfors, P.: Belief revision and nonmonotonic logic: Two sides of the same coin?. Proc. ECAI92, Pitman Publishing, pp. 768–773 (1992)
Kautz, H., Selman, B.: Pushing the envelope: planning, prepositional logic, and stochastic search. Proc. AAAI-96, pp. 1194–1201, Portland (1996)
Lehman, D.: Belief revision revisited. Proc. IJCAI-95, pp. 1534–1540 (1995)
Liberatore, P., Schaerf, M.: Relating belief revision and circumscription. Proc. IJCAI-95, pp. 1557–1553 (1995)
Liberatore, P., Schaerf, M.: The complexity of model checking for belief revision and update. Proc. AAAI-96, pp. 556–561 (1996)
Makinson, D., Gärdenfors, P.: Relations between the logic of theory change and nonmonotonic logic. In: Fuhrmann and Morreau (eds), Proc. of the Workshop on the logic of theory change, LNCS 465, Springer, pp. 185–205 (1991)
Mazure, B., SaÏs, L., Grégoire, E.: Detecting logical inconsistencies. Proc. AI and Maths Symposium, Fort Lauderdale (FL), pp. 116–121. (1996) (extended version in Annals of AI & Maths (in print))
Mazure, B., SaÏs, L., Grégoire, E.: Tabu search for SAT. Proc. AAAI-97, pp. 281–285 (1997)
McCarthy J.: Applications of circumscription to formalizing common-sense knowledge. Artificial Intelligence, vol. 28, pp. 89–116 (1986)
Moinard Y.: Revision and nonmonotonicity. Int. Journ. of Intelligent Systems, vol. 9 (1994)
Morris P.: The breakout method for escaping from local minima. Proc. AAAI-93 (1993)
Nebel B.: A knowledge level analysis of belief revision. Proc. KR-89, pp. 301–311 (1989)
Nebel B.: Syntax-based approaches to belief revision. In: Gärdenfors P. (ed), Belief Revision, Cambridge University Press, pp. 53–88 (1992)
Nebel B.: How hard is it to revise a belief base?. report 83, Institut für Informatik, Albert-Ludwigs-Universität Freiburg, Freiburg (1996)
Newell A.: The knowledge level. Artificial Intelligence, vol. 18, pp. 87–127 (1982)
Papini O.: Revision in prepositional calculus. Proc. ECSQAU91, Marseille, LNCS 548, Springer, pp. 272–276 (1991)
Selman, B., Kautz, H.: An empirical study of greedy local search for satisfiability testing“. Proc. AAAI-93 (1993)
Selman, B., Levesque, H., Mitchell, D.: A New Method for Solving Hard Satisfiability Problems. Proc. AAAI-92, pp. 440–446 (1992)
Selman, B., Kautz, H.A., Cohen, B.: Local Search Strategies for Satisfiability Testing. Proc. 1993 DIMACS Workshop on Maximum Clique, Graph Coloring, and Satisfiability (1993)
Selman, B., Kautz, H., McAllester, D.: Computational Challenges in Propositional Reasoning and Search. Proc. IJCAI-97 (1997)
Shoham, Y.: A semantical approach to non-monotonic logics. In: Ginsberg M.L. (ed.), Readings in Non-Monotonic Reasoning, Morgan Kaufmann (1987)
Williams, M.A.: Iterated Theory Base Change: a computational model. Proc. IJCAI-95, pp. 1541–1550 (1995)
Winslett, M.: Updating Logical Databases. Cambridge University Press (1990)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bessant, B., Grégoire, E., Marquis, P., SaÏs, L. (1998). Combining nonmonotonic reasoning and belief revision: A practical approach. In: Giunchiglia, F. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 1998. Lecture Notes in Computer Science, vol 1480. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0057439
Download citation
DOI: https://doi.org/10.1007/BFb0057439
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64993-9
Online ISBN: 978-3-540-49793-6
eBook Packages: Springer Book Archive