Abstract
Extending previous notions of generalized intervals, this paper defines the generalized interval as a tuple of solutions of some consistent interval network. It studies the possible relations between such generalized intervals and introduces the notion of a generalized interval network. It proves the tractability of the problem of the consistency of a generalized network which constraints are preconvex.
Preview
Unable to display preview. Download preview PDF.
References
J. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM, Volume 26, 832–843, 1983.
J. Allen, P. HayesA common sense theory of time. A. Joshi (editor), IJCAI-85, Proceedings of the 9th International Joint Conference on Artificial Intelligence, Volume 1, 528–531, Morgan Kaufmann 1985.
P. Balbiani, J.-F. Condotta, L. Fariñas del Cerro.A model for reasoning about bidimensional temporal relations. A. Cohn, L. Schubert (editors), KR'98. To appear.
C. Bessière, A. Isli, G. Ligozat.Global consistency in interval algebra networks: tractable subclasses. W. Wahlster (editor), ECAI-96. Proceedings of the 12th European Conference on Artificial Intelligence, 3–7, Wiley, 1996.
P. Ladkin. Time representation: a taxonomy of interval relations. AAAI-86. Proceedings of the Fifth National Conference on Artificial Intelligence, Volume 1, 360–366, 1986
P. Ladkin.Models of axioms for time intervals. AAAI-87. Proceedings of the Sixth National Conference on Artificial Intelligence, Volume 1, 234–239, Maurgan Kaufmann 1987.
G. Ligozat.Weak representations of interval algebras. AAAI-90. Proceedings of the 8th National Conference on Artificial Intelligence, Volume Two, 715–720, AAAI Press and MIT Press, 1990.
G. Ligozat.On generalized interval calculi. AAAI-91. Proceedings of the Ninth National Conference on Artificial Intelligence, Volume One, 234–240, AAAI Press and MIT Press, 1991.
G. Ligozat.A new proof of tractability for ORD-Horn relations. AAAI-96. Proceedings of the Thirteenth National Conference on Artificial Intelligence, Volume One, 395–401, AAAI Press and MIT Press, 1996.
G. Ligozat, H. Bestougeff. On relations between intervals. Information Processing Letters, Volume 32, 177–182, 1989.
A. MackworthConsistency in networks of relations. Artificial Intelligence, Volume 8, 99–118, 1977.
R. Morris, W. Shoaff, L. Khatib.Path consistency in a network of non-convex intervals. IJCAI-93. Proceedings of the 13th International Joint Conference on Artificial Intelligence, Volume 1, 655–660, Morgan Kaufmann, 1993.
B. Nebel, H.-J. Bürckert.Reasoning about temporal relations: a maximal tractable subclass of Allen's interval algebra. AAAI-94. Proceedings of the Twelfth National Conference on Artificial Intelligence, Volume One, 356–361, AAAI Press and MIT Press, 1994.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Balbiani, P., Condotta, J.F., Fariñas del Cerro, L., Osmani, A. (1998). Reasoning about generalized intervals. In: Giunchiglia, F. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 1998. Lecture Notes in Computer Science, vol 1480. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0057434
Download citation
DOI: https://doi.org/10.1007/BFb0057434
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64993-9
Online ISBN: 978-3-540-49793-6
eBook Packages: Springer Book Archive