Abstract
The computation of parameters for group contribution models in order to predict thermodynamic properties usually leads to a multiparameter optimization problem. The model parameters are calculated using a regression method and applying certain error criteria. A complex objective function occurs for which an optimization algorithm has to find the global minimum. For simple increment or group contribution models it is often sufficient to use deterministically working optimization algorithms. However, if the model contains parameters in complex terms such as sums of exponential expressions, the optimization problem will be a non-linear regression problem and the search of the global optimum becomes rather difficult. In this paper we report, that conventional multimembered (Μ,λ)- and (Μ+λ.)-Evolution Strategies could not cope with such non-linear regression problems without further ado, whereas multimembered encapsulated Evolution Strategies with multi-dimensional step length control are better suited for the optimization problem considered here.
Preview
Unable to display preview. Download preview PDF.
References
Bäck, Th., Evolutionary Algorithms in Theory and Practice, Informatik Centrum Dortmund, Oxford University Press, New York/Oxford (1996)
Fredenslund, A., Jones, R. L. and Prausnitz, J. M., Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE Journal, 21, (1975) 1086–1099
Friese, T., Ulbig, P., and Schulz, S., Use of Evolutionary Algorithms for the Calculation of Group Contribution Parameters in order to Predict Thermodynamic Properties. Part 1: Genetic Algorithms, Computers & Chemical Engineering (1998) (in press)
Geyer, H., Ulbig, P., and Schulz, S., Use of Evolutionary Algorithms for the Calculation of Group Contribution Parameters in order to Predict Thermodynamic Properties. Part 2: Evolution Strategies, Computers & Chemical Engineering (1998) (submitted)
Neider, J. A., Mead, R., A simplex method for function minimization, In: Computer Journal, 7(1965)
Rechenberg, I., Evolutionsstrategie '94, Werkstatt Bionik und Evolutionstechnik, Band 1, Friedrich Frommann, Stuttgart (1994)
Rudolph, G., On correlated mutations in evolution strategies. In R. Männer and B. Manderick, Parallel Problem Solving from Nature, 2, Elsevier, Amsterdam (1992) 105–114
Ulbig, P., Entwicklung der Gruppenbeitragsmodelle UNIVAP & EBGCM zur Vorhersage thermodynamischer Größen sowie Bestimmung der Modellparameter unter Verwendung evolutionärer Algorithmen, PhD Thesis, Institute for Thermodynamics, University of Dortmund (1996)
Ulbig, P., Friese, T., Geyer, H., Kracht, C., and Schulz, S., Prediction of thermodynamic properties for chemical engineering with the aid of Computational Intelligence. In: Progress in Connectionist-Based Information Systems — Proceedings of the 1997 International Conference on Neural Information Processing and Intelligent Information Systems, Vol. 2, Springer, New York (1997) 1259–1262
Schwefel, H.-P., Numerical Optimization of Computer Models, Wiley, Chichester (1981)
Schwefel, H.-P., Evolution and Optimum Seeking, Wiley, New York (1995)
Weidlich, U., Gmehling, J.: A modified UNIFAC model. Ind. Eng. Chem. Res., Vol. 26. (1987) 1372
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Geyer, H., Ulbig, P., Schulz, S. (1998). Encapsulated Evolution strategies for the determination of group contribution model parameters in order to predict thermodynamic properties. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, HP. (eds) Parallel Problem Solving from Nature — PPSN V. PPSN 1998. Lecture Notes in Computer Science, vol 1498. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0056939
Download citation
DOI: https://doi.org/10.1007/BFb0056939
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-65078-2
Online ISBN: 978-3-540-49672-4
eBook Packages: Springer Book Archive