Nothing Special   »   [go: up one dir, main page]

Skip to main content

Encapsulated Evolution strategies for the determination of group contribution model parameters in order to predict thermodynamic properties

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature — PPSN V (PPSN 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1498))

Included in the following conference series:

Abstract

The computation of parameters for group contribution models in order to predict thermodynamic properties usually leads to a multiparameter optimization problem. The model parameters are calculated using a regression method and applying certain error criteria. A complex objective function occurs for which an optimization algorithm has to find the global minimum. For simple increment or group contribution models it is often sufficient to use deterministically working optimization algorithms. However, if the model contains parameters in complex terms such as sums of exponential expressions, the optimization problem will be a non-linear regression problem and the search of the global optimum becomes rather difficult. In this paper we report, that conventional multimembered (Μ,λ)- and (Μ+λ.)-Evolution Strategies could not cope with such non-linear regression problems without further ado, whereas multimembered encapsulated Evolution Strategies with multi-dimensional step length control are better suited for the optimization problem considered here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bäck, Th., Evolutionary Algorithms in Theory and Practice, Informatik Centrum Dortmund, Oxford University Press, New York/Oxford (1996)

    Google Scholar 

  2. Fredenslund, A., Jones, R. L. and Prausnitz, J. M., Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE Journal, 21, (1975) 1086–1099

    Article  Google Scholar 

  3. Friese, T., Ulbig, P., and Schulz, S., Use of Evolutionary Algorithms for the Calculation of Group Contribution Parameters in order to Predict Thermodynamic Properties. Part 1: Genetic Algorithms, Computers & Chemical Engineering (1998) (in press)

    Google Scholar 

  4. Geyer, H., Ulbig, P., and Schulz, S., Use of Evolutionary Algorithms for the Calculation of Group Contribution Parameters in order to Predict Thermodynamic Properties. Part 2: Evolution Strategies, Computers & Chemical Engineering (1998) (submitted)

    Google Scholar 

  5. Neider, J. A., Mead, R., A simplex method for function minimization, In: Computer Journal, 7(1965)

    Google Scholar 

  6. Rechenberg, I., Evolutionsstrategie '94, Werkstatt Bionik und Evolutionstechnik, Band 1, Friedrich Frommann, Stuttgart (1994)

    Google Scholar 

  7. Rudolph, G., On correlated mutations in evolution strategies. In R. Männer and B. Manderick, Parallel Problem Solving from Nature, 2, Elsevier, Amsterdam (1992) 105–114

    Google Scholar 

  8. Ulbig, P., Entwicklung der Gruppenbeitragsmodelle UNIVAP & EBGCM zur Vorhersage thermodynamischer Größen sowie Bestimmung der Modellparameter unter Verwendung evolutionärer Algorithmen, PhD Thesis, Institute for Thermodynamics, University of Dortmund (1996)

    Google Scholar 

  9. Ulbig, P., Friese, T., Geyer, H., Kracht, C., and Schulz, S., Prediction of thermodynamic properties for chemical engineering with the aid of Computational Intelligence. In: Progress in Connectionist-Based Information Systems — Proceedings of the 1997 International Conference on Neural Information Processing and Intelligent Information Systems, Vol. 2, Springer, New York (1997) 1259–1262

    Google Scholar 

  10. Schwefel, H.-P., Numerical Optimization of Computer Models, Wiley, Chichester (1981)

    Google Scholar 

  11. Schwefel, H.-P., Evolution and Optimum Seeking, Wiley, New York (1995)

    Google Scholar 

  12. Weidlich, U., Gmehling, J.: A modified UNIFAC model. Ind. Eng. Chem. Res., Vol. 26. (1987) 1372

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Agoston E. Eiben Thomas Bäck Marc Schoenauer Hans-Paul Schwefel

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Geyer, H., Ulbig, P., Schulz, S. (1998). Encapsulated Evolution strategies for the determination of group contribution model parameters in order to predict thermodynamic properties. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, HP. (eds) Parallel Problem Solving from Nature — PPSN V. PPSN 1998. Lecture Notes in Computer Science, vol 1498. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0056939

Download citation

  • DOI: https://doi.org/10.1007/BFb0056939

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65078-2

  • Online ISBN: 978-3-540-49672-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics