Nothing Special   »   [go: up one dir, main page]

Skip to main content

A game semantics foundation for logic programming

Extended abstract

  • Conference paper
  • First Online:
Principles of Declarative Programming (ALP 1998, PLILP 1998)

Abstract

We introduce a semantics of Logic Programming based on an classical Game Theory, which is proven to be sound and complete w.r.t. the traditional operational semantics and Negation as Failure. This game semantics is based on an abstract reformulation of classical results about two player games, and allows a very simple characterization of the solution set of a logic program in terms of approximations of the value of the game associated to it, which can also be used to capture in a very simple way the traditional “negation as failure” extensions. This approach to semantics also opens the way to a better understanding of the mechanisms at work in parallel implementations of logic programs and in the operational semantics of logic programs with negative goals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aumann and Hart (eds). Handbook of Game Theory with Economic Applications. 1992.

    Google Scholar 

  2. Samson Abramsky and Rhada Jagadeesan. Games and full completeness for multiplicative linear logic. The Journal of Symbolic Logic, 59(2):543–574, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  3. Krzysztof Apt. From Logic Programming to Prolog. Prentice Hall, 1997.

    Google Scholar 

  4. A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. The s-semantics approach: Theory and applications. Journal of Logic Programming, 19–20:149–197, 1994.

    Article  MathSciNet  Google Scholar 

  5. A. Blass. A game semantics for linear logic. Annals of Pure and Applied Logic, 56:pages 183–220, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  6. M.G. Brockington. A taxonomy of parallel game-tree search algorithms. Journal of the International Computer Chess Association, 19(3):162–174, 1996.

    Google Scholar 

  7. P.L. Curien and H. Herbelin. Computing with abstract bohm trees. 1996.

    Google Scholar 

  8. Levi Comici and Meo. Compositionality of SLD-derivations and their abstractions. ILPS, 1995.

    Google Scholar 

  9. K. Doets. Levationis Laus. Journal of Logic Computation, 3(5):pages 487–516, 1993.

    MATH  MathSciNet  Google Scholar 

  10. E. Eder. Properties of substitutions and unifications. Journal of Symbolic Computation, (1):31–46, 1985.

    Google Scholar 

  11. A. Joyal. Free lattices, communication and money games. Proceedings of the 10th International Congress of Logic, Methodology, and Philosophy of Science, 1995.

    Google Scholar 

  12. F. Lamarche. Game semantics for full prepositional linear logic. LICS, pages 464–473, 1995.

    Google Scholar 

  13. Jean Loddo and Stéphane Nicolet. Theorie des jeux et langages de programmation. Technical report TR-98-01, ENS, 45, Rue d'Ulm, 1998.

    Google Scholar 

  14. G. Levi and F. Patricelli. Prolog: Linguaggio Applicazioni ed Implementazioni. Scuola Superiore G. Reiss Romoli, 1993.

    Google Scholar 

  15. C. Palamidessi. Algebraic properties of idempotent substitutions, ICALP, LNCS, 443, 1990.

    Google Scholar 

  16. V. Danos P. Baillot and T. Ehrhard. Believe it or not, AJM's games model is a model of classical linear logic. LICS, pages 68–75, 1997.

    Google Scholar 

  17. J. von Neumann. Zur Theorie der Gesellschaftsspiele. Mathaematische Annalen, (100):195–320, 1928.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Catuscia Palamidessi Hugh Glaser Karl Meinke

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Di Cosmo, R., Loddo, JV., Nicolet, S. (1998). A game semantics foundation for logic programming. In: Palamidessi, C., Glaser, H., Meinke, K. (eds) Principles of Declarative Programming. ALP PLILP 1998 1998. Lecture Notes in Computer Science, vol 1490. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0056626

Download citation

  • DOI: https://doi.org/10.1007/BFb0056626

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65012-6

  • Online ISBN: 978-3-540-49766-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics