Nothing Special   »   [go: up one dir, main page]

Skip to main content

Genetic algorithms as prototyping tools for multi-agent systems: Application to the antenna parameter setting problem

  • Conference paper
  • First Online:
Intelligent Agents for Telecommunication Applications (IATA 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1437))

Abstract

This paper deals with using an evolutionary algorithm (EA) as a prototyping tool to develop and refine a multi agents system (MAS) for problem solving. In the case of (distributed) solving, MAS may lack some knowledge about the solving mechanism. Using a GA as a prototyping tool thus enables to extract heuristics for use in the MAS design. This approach, based upon a model conciliating both EA and MAS perspectives, is tested on the antenna parameter setting problem (APSP) from the field of radiomobile networks. We demonstrate the feasibility and interest of such an approach for complex problems. Moreover, we advocate the use of MAS techniques for the field of radiomobile networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Beasley D, Bull D.R., Martin R.R. (1993). An Overview of Genetic Algorithms. University Computing.

    Google Scholar 

  2. Briot J.P. (1988). From Objects to Actors: Study of a Limited Symbiosis in Smalltalk-80. Research Report RXF-LITP, nℴ88-58.

    Google Scholar 

  3. Cardozo E., Sichman J.S., Demazeau Y. (1993). Using the Active Object Model to Implement Multi-Agent Systems. In Proc. of the 5 th IEEE Int. Conf. on Tools with Artificial Intelligence.

    Google Scholar 

  4. Durfee E.H., Rosenschein J.S. (1994). Distributed Problem Solving and Multi-Agent Systems: Comparisons and Examples.

    Google Scholar 

  5. Ferber J. (1995). Les systèmes multi-agents: vers une intelligence collective. InterEditions.

    Google Scholar 

  6. Ferber J., Jacopin E. (1991). The framework of EcoProblem Solving. Decentralized AI, vol. 2. Elsevier.

    Google Scholar 

  7. Goldberg D.E. (1994). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley.

    Google Scholar 

  8. Groupe de travail “Collectif” IAD/SMA de AFCET/AFIA (1997). Emergence et Systèmes Multi-agents. In Actes des 5ème Journées Francophones d'Intelligence Artificielle et Systèmes Multi-Agents, pp 323–341. Hermes.

    Google Scholar 

  9. Guedira K. (1993). MASC: une approche multi-agents des problèmes de satisfaction de contraintes. Thèse de Doctorat, Ecole Nationale Supérieure de l'Aeronautique et de l'Espace.

    Google Scholar 

  10. Guisnet B. (1996). La propagation pour les services de mobilité. Les Communications avec les Mobiles.

    Google Scholar 

  11. Hao J.K., Galinier P., Habib M., Méthodes heuristiques pour l'optimisation combinatoire et l'affectation sous contraintes. In Actes des 6èmes journées nationales, PRC-GDR IA, pp 107–144. Hermes.

    Google Scholar 

  12. Labidi S., Lejouad W. (1993). De l'Intelligence Artificielle Distribuée aux Systèmes Multi-Agents. Rapport de recherche nℴ2004. INRIA.

    Google Scholar 

  13. Magnin L. (1996). Modélisation et simulation de l'environnement dans les systèmes multi-agents — Application aux robots footballeurs. Thèse de doctorat. Université Paris VI.

    Google Scholar 

  14. Matthews D. GALIB a C++ Library of Genetic Algorithm Components, http://lancet.mit.edu/ga/.

    Google Scholar 

  15. Renaud D., A. Caminada (1997). Evolutionary Methods and Operators for Frequency Assignment Problem. SpeedUp Journal, vol. 11, nr. 2, pp. 27–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sahin Albayrak Francisco J. Garijo

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lissajoux, T., Hilaire, V., Koukam, A., Caminada, A. (1998). Genetic algorithms as prototyping tools for multi-agent systems: Application to the antenna parameter setting problem. In: Albayrak, S., Garijo, F.J. (eds) Intelligent Agents for Telecommunication Applications. IATA 1998. Lecture Notes in Computer Science, vol 1437. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0053941

Download citation

  • DOI: https://doi.org/10.1007/BFb0053941

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64720-1

  • Online ISBN: 978-3-540-69102-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics