Nothing Special   »   [go: up one dir, main page]

Skip to main content

The resolution rule: An algebraic perspective

  • Contributed Papers
  • Conference paper
  • First Online:
Algebraic Logic and Universal Algebra in Computer Science (ALUACS 1988)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 425))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abadi and Z. Manna: A Timely Resolution, Stanford University TR STAN-CS-86-1106 (1986).

    Google Scholar 

  2. G. Grätzer: Universal Algebra, D. Van Nostrand (1968).

    Google Scholar 

  3. L. Henschen and A. Naqvi: Representing Infinite Sequences of Resolvents in Recursive First-Order Horn Databases, LNCS 138 (1982), 342–359.

    MATH  MathSciNet  Google Scholar 

  4. K. Konolige: Resolution and Quantified Epistemic Logics, LNCS 230 (1986), 199–208.

    MATH  MathSciNet  Google Scholar 

  5. J. Loś and R. Suszko: Remarks on Sentential Logics, Indagationes Mathematicae 20 (1958), 177–183.

    Google Scholar 

  6. Z. Manna and R. Waldinger: Special Relations in Automated Deduction, JACM 33 (1986), 1–59.

    Article  MATH  MathSciNet  Google Scholar 

  7. N. Murray: Completely Non-Clausal Theorem Proving, Artificial Intelligence 18 (1982), 67–85.

    Article  MATH  MathSciNet  Google Scholar 

  8. J.A. Robinson: A Machine-Oriented Logic Based on the Resolution Principle, JACM 12 (1965), 23–41.

    Article  MATH  Google Scholar 

  9. Z. Stachniak: Some Notes on Characteristic Consequence Operations, Bulletin of The Section of Logic, PAN 7 (1978), 159,168.

    MathSciNet  Google Scholar 

  10. Z. Stachniak: Minimization of Resolution Proof Systems (to appear); see also York University TR CS-88-07 (1988).

    Google Scholar 

  11. Z. Stachniak and P. O'Hearn: Resolution in the Domain of Strongly Finite Logics, to appear in Fundamenta Informaticae (1989); see also York University Technical Report #CS-87-14 (1987).

    Google Scholar 

  12. P. Thistlewaite, M. McRobbie and R. Meyer: Automated Theorem-Proving in Non-Classical Logics, Pitman (1988).

    Google Scholar 

  13. R. Wójcicki: Strongly Finite Sentential Calculi, in Selected Papers on Lukasiewicz Sentential Calculi (ed. R. Wójcicki) (1977), 53–77.

    Google Scholar 

  14. J. Zygmunt: A Note on Direct Products and Ultraproducts of Logical Matrices, Studia Logica 33 (1974), 349–357.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Clifford H. Bergman Roger D. Maddux Don L. Pigozzi

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stachniak, Z. (1990). The resolution rule: An algebraic perspective. In: Bergman, C.H., Maddux, R.D., Pigozzi, D.L. (eds) Algebraic Logic and Universal Algebra in Computer Science. ALUACS 1988. Lecture Notes in Computer Science, vol 425. Springer, New York, NY. https://doi.org/10.1007/BFb0043087

Download citation

  • DOI: https://doi.org/10.1007/BFb0043087

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97288-6

  • Online ISBN: 978-0-387-34804-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics