Nothing Special   »   [go: up one dir, main page]

Skip to main content

Optimal semantics of data type extensions

  • Contributed Papers
  • Conference paper
  • First Online:
Algebraic Logic and Universal Algebra in Computer Science (ALUACS 1988)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8 References

  1. J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J.B. Wright (ADJ). An initial algebra approach to the specification, correctness, and implementation of abstract data types. In R. T. Yeh, editor, Current Trends in Programming Methodology IV. Prentice-Hall, 1978.

    Google Scholar 

  2. J. V. Guttag and J. J. Horning. The algebraic specification of abstract data types. Acta Informatica, 10(1):27–52, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. C. Hoffman and M. J. O'Donnell. Programming with equations. ACM TOPLAS, 4(1):83–112, 1982.

    Article  Google Scholar 

  4. S. Kamin. Final data types and their specifications. ACM TOPLAS, 5(1):97–121, 1983.

    Article  MATH  Google Scholar 

  5. D. Kapur and D. R. Musser. Proof by consistency. General Electric Corporate Research and Development Report 84 GEN008, 1984.

    Google Scholar 

  6. D. Kapur and D. R. Musser. Inductive reasoning with incomplete specifications. In Proceedings of the Symposium on Logic in Computer Science, pages 367–377, 1986.

    Google Scholar 

  7. R. Milner. Fully abstract models of typed λ-calculi. Theoretical Computer Science, 4:1–22, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Milner. A proposal for standard ML. In Proc. 1984 Symp. on LISP and Functional Programming, pages 184–197. ACM, 1984.

    Google Scholar 

  9. L. S. Moss, J. Meseguer, and J. A. Goguen. Final algebras, cosemicomputable algebras, and degrees of unsolvability. Theoretical Computer Science, To Appear.

    Google Scholar 

  10. M. Nivat. On the interpretation of recursive polyadic program schemes. Symposia Mathematica, 15:255–281, 1975.

    MATH  MathSciNet  Google Scholar 

  11. J. C. Raoult and J. C. Vuillemin. Operational and semantic equivalence between recursive programs. J. Assoc. Comp. Mach., 27(4):772–776, 1980.

    MATH  MathSciNet  Google Scholar 

  12. S. R. Thatte. Full abstraction and limiting completeness in equational languages. Theoretical Computer Science, 65(1), 1989.

    Google Scholar 

  13. D. A. Turner. Miranda: A non-strict functional language with polymorphic types. In LNCS 201. Springer-Verlag, 1985.

    Google Scholar 

  14. C. Wadsworth. The relation between computational and denotational properties for Scott's D models of the λ-calculus. SIAM Journal of Computing, 5(3):488–520, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Wand. Final algebra semantics and data type extensions. Journal of Computer and System Sciences, 19(1):27–44, 1977.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Clifford H. Bergman Roger D. Maddux Don L. Pigozzi

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moss, L.S., Thatte, S.R. (1990). Optimal semantics of data type extensions. In: Bergman, C.H., Maddux, R.D., Pigozzi, D.L. (eds) Algebraic Logic and Universal Algebra in Computer Science. ALUACS 1988. Lecture Notes in Computer Science, vol 425. Springer, New York, NY. https://doi.org/10.1007/BFb0043083

Download citation

  • DOI: https://doi.org/10.1007/BFb0043083

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97288-6

  • Online ISBN: 978-0-387-34804-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics