Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fast self-reduction algorithms for combinatorial problems of VLSI design

  • VLSI Layout
  • Conference paper
  • First Online:
VLSI Algorithms and Architectures (AWOC 1988)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 319))

Included in the following conference series:

Abstract

In a recent series of papers [FL1, FL2, FL3], we have proven the existence of decision algorithms with low-degree polynomial running times for a number of well-studied VLSI layout, placement and routing problems. These results make use of the powerful Robertson-Seymour theorems on the well-partial-ordering of graphs under both the minor and immersion orders. In the present paper, we study the complexity of construction versions of these problems, focusing on efficient self-reduction strategies. We introduce a notion of fast self-reduction in this setting and develop a general technique, which we term scaffolding, that is useful in the design of fast self-reduction algorithms.

This author's research is supported in part by the Sandia University Research Program and by the National Science Foundation under grant MIP-8603879.

This author's research is supported in part by the Washington State Technology Center and by the National Science Foundation under grants ECS-8403859 and MIP-8603879.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Abrahamson, M. R. Fellows, M. A. Langston and B. Moret, “Constructive Complexity,” to appear.

    Google Scholar 

  2. S. Arnborg and A. Proskurowski, “Linear Time Algorithms for NP-hard Problems on Graphs Embedded in k-trees,” TRITA-NA-8404, The Royal Institute of Technology (1984).

    Google Scholar 

  3. S. R. Buss and M. R. Fellows, “Achieving the Robertson-Seymour Bounds: k-Feedback and Related Vertex Sets,” to appear.

    Google Scholar 

  4. R. L. Bryant, M. R. Fellows, N. G. Kinnersley and M. A. Langston, “On Finding Obstruction Sets and Polynomial-Time Algorithms for Gate Matrix Layout,” Proc. 25th Allerton Conf. on Communication, Control, and Computing (1987), 397–398.

    Google Scholar 

  5. D. J. Brown, M. R. Fellows and M. A. Langston, “Polynomial-Time Self-Reducibility: Theoretical Motivations and Practical Results,” Computer Science Technical Report CS-87-171, Washington State University, 1987.

    Google Scholar 

  6. M. W. Bern, E. L. Lawler and A. L. Wong, “Why Certain Subgraph Computations Require Only Linear Time,” Proc. 26th IEEE Symposium the Foundations of Computer Science (1985), 117–125.

    Google Scholar 

  7. H. L. Bodlaender, “Classes of Graphs with Bounded Tree-Width,” Technical Report RUU-CS-86-22, Department of Computer Science, University of Utrecht, 1986.

    Google Scholar 

  8. B. Bollabás, Extremal Graph Theory, Academic Press, New York, 1978.

    Google Scholar 

  9. M. Blum and S. Rudich, private communication.

    Google Scholar 

  10. N. Deo, M. S. Krishnamoorthy and M. A. Langston, “Exact and Approximate Solutions for the Gate Matrix Layout Problem,” IEEE Trans. on Computer-Aided Design 6 (1987), 79–84.

    Article  Google Scholar 

  11. J. Ellis, I. H. Sudborough and J. Turner, “Graph Separation and Search Number,” to appear.

    Google Scholar 

  12. M. R. Fellows, “Applications of the Robertson-Seymour Theorems: A Survey,” to appear.

    Google Scholar 

  13. M. R. Fellows and M. A. Langston, “Nonconstructive Advances in Polynomial-Time Complexity,” Info. Proc. Letters 26 (1987), 157–162.

    Article  MATH  MathSciNet  Google Scholar 

  14. —, “Nonconstructive Tools for Proving Polynomial-Time Decidability,” J. of the ACM, to appear.

    Google Scholar 

  15. —, “Layout Permutation Problems and Well-Partially-Ordered Sets,” Proc. 5th MIT Conf. on Advanced Research in VLSI (1988), to appear.

    Google Scholar 

  16. H. Friedman, N. Robertson and P. D. Seymour, “The Metamathematics of the Graph Minor Theorem,” in Applications of Logic to Combinatorics, American Math. Soc., Providence, RI, to appear.

    Google Scholar 

  17. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, CA, 1979.

    MATH  Google Scholar 

  18. E. M. Gurari and I. H. Sudborough, “Improved Dynamic Programming Algorithms for Bandwidth Minimization and the Min Cut Linear Arrangement Problem,” J. of Algorithms 5 (1984), 531–546.

    Article  MATH  MathSciNet  Google Scholar 

  19. D. S. Johnson, “The Many Faces of Polynomial Time,” in The NP-Completeness Column: An Ongoing Guide, J. Algorithms 8 (1987), 285–303.

    Article  MATH  MathSciNet  Google Scholar 

  20. T. Kashiwabara and T. Fujisawa, “NP-completeness of the Problem of Finding a Minimum-Clique-Number Interval Graph Containing a Given Graph as a Subgraph,” Proc. IEEE Symp. on Circuits and Systems (1979), 657–660.

    Google Scholar 

  21. D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-Wesley, Reading, MA, 1973.

    Google Scholar 

  22. M. Kirousis and C. H. Papadimitriou, “Searching and Pebbling,” Technical Report, National Technical University, Athens, Greece, 1983.

    Google Scholar 

  23. R. M. Karp, E. Upfal and A. Wigderson, “Are Search and Decision Problems Computationally Equivalent,” Proc. 17th ACM Symp. on Theory of Computing (1985), 464–475.

    Google Scholar 

  24. T. Lengauer, “Black-White Pebbles and Graph Separation,” Acta Informatica 16 (1981), 465–475.

    Article  MATH  MathSciNet  Google Scholar 

  25. W. Mader, “A Reduction Method for Edge-Connectivity in Graphs,” Annals of Disc. Math 3 (1978), 145–164.

    Article  MATH  MathSciNet  Google Scholar 

  26. F. S. Makedon and I. H. Sudborough, “On Minimizing Width in Linear Layouts,” to appear.

    Google Scholar 

  27. N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson and C. H. Papadimitriou, “On the Complexity of Searching a Graph,” IBM Research Report RJ 4987, 1986.

    Google Scholar 

  28. Z. Miller and I. H. Sudborough, “Polynomial Algorithms for Recognizing Small Cutwidth in Hypergraphs,” to appear.

    Google Scholar 

  29. C. Nash-Williams, “On Well-Quasi-Ordering Infinite Trees,” Proc. Cambridge Phil. Soc. 61 (1965), 697–720.

    Article  MATH  MathSciNet  Google Scholar 

  30. A. Rosenberg, “Issues in the Study of Graph Embeddings,” Lecture Notes in Computer Science 100 (1981), 150–176.

    MATH  Google Scholar 

  31. N. Robertson and P. D. Seymour, “Disjoint Paths-a Survey,” SIAM J. Alg. Disc. Meth. 6 (1985), 300–305.

    MATH  MathSciNet  Google Scholar 

  32. —, “Graph Minors—a Survey,” in Surveys in Combinatorics (I. Anderson, ed.), Cambridge Univ. Press, 1985.

    Google Scholar 

  33. —, “Graph Minors I. Excluding a Forest,” J. Comb. Th. Ser. B 35 (1983), 39–61.

    Article  MATH  MathSciNet  Google Scholar 

  34. —, “Graph Minors IV. Tree-Width and Well-Quasi-Ordering,” to appear.

    Google Scholar 

  35. —, “Graph Minors XIII. The Disjoint Paths Problem,” to appear.

    Google Scholar 

  36. —, “Graph Minors XVI. Wagner's Conjecture,” to appear.

    Google Scholar 

  37. D. Seese, “Tree-Partite Graphs and the Complexity of Algorithms,” Preprint P-Math-08/86, Karl-Weierstrass-Institut für Mathematik, Akademie der Wissenschaften der DDR, 1986.

    Google Scholar 

  38. P. Scheffler and D. Seese, “Graphs of Bounded Tree-Width and Linear-Time Algorithms for NP-Complete Problems,” manuscript, 1986.

    Google Scholar 

  39. K. Wagner, “Uber Einer Eigenshaft der Ebener Complexe,” Math. Ann. 14 (1937), 570–590.

    Article  Google Scholar 

  40. T. V. Wimer, S. T. Hedetniemi and R. Laskar, “A Methodology for Constructing Linear Graph Algorithms,” Congressus Numerantium 50 (1985), 43–60.

    MATH  MathSciNet  Google Scholar 

  41. T. V. Wimer, “Linear Algorithms on k-Terminal Graphs,” Ph.D. Dissertation, Clemson University, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

John H. Reif

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fellows, M.R., Langston, M.A. (1988). Fast self-reduction algorithms for combinatorial problems of VLSI design. In: Reif, J.H. (eds) VLSI Algorithms and Architectures. AWOC 1988. Lecture Notes in Computer Science, vol 319. Springer, New York, NY. https://doi.org/10.1007/BFb0040395

Download citation

  • DOI: https://doi.org/10.1007/BFb0040395

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96818-6

  • Online ISBN: 978-0-387-34770-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics