Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fuzzy unification and resolution proof procedure for fuzzy conceptual graph programs

  • Formal Reasoning
  • Conference paper
  • First Online:
Conceptual Structures: Fulfilling Peirce's Dream (ICCS 1997)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1257))

Included in the following conference series:

Abstract

Fuzzy conceptual graph programs are order-sorted fuzzy logic programs based on fuzzy conceptual graphs (FCGs). In this paper, we develop fuzzy unification and resolution proof procedure, taking into account fuzziness of FCGs and properties of fuzzy reasoning, for FCG programs. General issues of both CG and FCG unifications and resolution procedures are also analysed and solutions to them are proposed. The resolution procedure is proved to be sound with respect to the declarative semantics of FCG programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aït-Kaci, H. & Nasr, R. (1986), Login: A Logic Programming Language with Built-in Inheritance. J. of Logic Programming, 3:185–215.

    Google Scholar 

  2. Baldwin, J.F. & Martin, T.P. & Pilsworth, B.W. (1995), Frit-Fuzzy and Evidential Reasoning in Artificial Intelligence. John Wiley&Sons, New York.

    Google Scholar 

  3. Beierle, C. & Hedtsruck, U. & Pietat, U. & Schmitt, P.H. & Siekmann, J. (1992), An Order-Sorted Logic for Knowledge Representation Systems. J. of Artificial Intelligence, 55: 149–191.

    Google Scholar 

  4. Cao, T.H. (1995), Fuzzy Conceptual Graph Programs. Master's Thesis, Asian Institute of Technology, December 1995.

    Google Scholar 

  5. Ghosh, B.C. & Wuwongse, V. (1995), A Direct Proof Procedure for Definite Conceptual Graph Programs. In Ellis & Levinson & Rich & Sowa (eds.): Conceptual Structures: Applications, Implementation and Theory, LNAI No. 954, Springer-Verlag, pp. 158–172.

    Google Scholar 

  6. Ghosh, B.C. (1996), Conceptual Graph Language-A Language of Logic and Information in Conceptual Structures. PhD Thesis, Asian Institute of Technology.

    Google Scholar 

  7. Lloyd, J.W. (1987), Foundations of Logic Programming. Springer-Verlag.

    Google Scholar 

  8. Magrez, P. & Smets, P. (1989), Fuzzy Modus Ponens: A New Model Suitable for Applications in Knowledge-Based Systems. Int. J. of Intelligent Systems, 4: 181–200.

    Google Scholar 

  9. Morton, S. (1987), Conceptual Graphs and Fuzziness in Artificial Intelligence. PhD Thesis, University of Bristol.

    Google Scholar 

  10. Mukaidono, M. & Shen, Z. & Ding, L. (1989), Fundamentals of Fuzzy Prolog. Int J. of Approximate Reasoning, 3:179–194.

    Google Scholar 

  11. Salvat, E. & Mugnier, M.L. (1996), Sound and Complete Forward and Backward Chainings of Graph Rules. In Eklund & Ellis & Mann (eds.): Conceptual Structures: Knowledge Representation as Interlingua, LNAI No. 1115, Springer-Verlag, pp. 248–262.

    Google Scholar 

  12. Sowa, J.F. (1984), Conceptual Structures: Information Processing in Mind and Machine. Addison Wesley, Massachusetts.

    Google Scholar 

  13. Wermelinger, M. & Lopes, J. G. (1994), Basic Conceptual Structures Theory. In Tepfenhart & Dick & Sowa (eds.): Conceptual Structures: Current Practices, LNAI 835, Springer-Verlag, pp. 144–159.

    Google Scholar 

  14. Wuwongse, V. & Manzano, M. (1993), Fuzzy Conceptual Graphs. In Mineau & Moulin (eds.): Conceptual Graphs for Knowledge Representation, LNAI No.699, Springer-Verlag, pp. 430–449.

    Google Scholar 

  15. Wuwongse, V. & Cao, T.H. (1996), Towards Fuzzy Conceptual Graph Programs. In Eklund & Ellis & Mann (eds.): Conceptual Structures-Knowledge Representation as Interlingua, LNAI No.1115, Springer-Verlag, pp. 263–276.

    Google Scholar 

  16. Zadeh, L.A. (1965), Fuzzy Sets. J. of Information and Control, 8: 338–353.

    Google Scholar 

  17. Zadeh, L.A. (1979), A Theory of Approximate Reasoning. Machine Intelligence, 9: 149–194.

    Google Scholar 

  18. Zadeh, L.A. (1990), The Birth and Evolution of Fuzzy Logic. Int J. of General Systems, 17: 95–105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Dickson Lukose Harry Delugach Mary Keeler Leroy Searle John Sowa

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cao, T.H., Creasy, P.N., Wuwongse, V. (1997). Fuzzy unification and resolution proof procedure for fuzzy conceptual graph programs. In: Lukose, D., Delugach, H., Keeler, M., Searle, L., Sowa, J. (eds) Conceptual Structures: Fulfilling Peirce's Dream. ICCS 1997. Lecture Notes in Computer Science, vol 1257. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0027885

Download citation

  • DOI: https://doi.org/10.1007/BFb0027885

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63308-2

  • Online ISBN: 978-3-540-69424-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics