Nothing Special   »   [go: up one dir, main page]

Skip to main content

Ordered Binary Decision Diagrams and the Davis-Putnam procedure

  • Conference paper
  • First Online:
Constraints in Computational Logics (CCL 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 845))

Included in the following conference series:

Abstract

We compare two prominent decision procedures for propositional logic: Ordered Binary Decision Diagrams (Obdds) and the Davis-Putnam procedure. Experimental results indicate that the Davis-Putnam procedure outperforms Obdds in hard constraint-satisfaction problems, while Obdds are clearly superior for Boolean functional equivalence problems from the circuit domain, and, in general, problems that require the schematization of a large number of solutions that share a common structure. The two methods illustrate the different and often complementary strengths of constraint-oriented and search-oriented procedures.

This research was supported by the National Science Foundation under Grant CCR-8922330.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anuchitanukul, A., and Manna, Z. Anti-isomorphic BDDs. Technical report, Computer Science Department, Stanford University, Stanford, CA, June 1994.

    Google Scholar 

  2. Bahar, R. I., Frohm, E. A., Gaona, C. M., Hachtel, G. D., Mach, E., Pardo, A., and Somenzi, F. Algebraic decision diagrams and their applications. In IEEE Intl. Conf. on Computer-Aided Design (Nov. 1993), pp. 188–191.

    Google Scholar 

  3. Benhamou, F., and Colmerauer, A., Eds. Constraint Logic Programming: Selected Research. MIT Press, 1993.

    Google Scholar 

  4. Boy de la Tour, T., and Chaminade, G. The use of renaming to improve the efficiency of clausal theorem proving. In Art. Int. IV: Methodology, Systems, Applications (1990), P. Jorrand and V. Sgurev, Eds., Elsevier, pp. 3–12.

    Google Scholar 

  5. Brace, K. S., Rudell, R. L., and Bryant, R. E. Efficient implementation of a BDD package. In Proc. 27thDesign Automation Conf. (1990), pp. 40–45.

    Google Scholar 

  6. Bryant, R. E. Graph-based algorithms for Boolean function manipulation. IEEE Trans. on Computers 35, 8 (Aug. 1986), 677–691.

    Google Scholar 

  7. Bryant, R. E. On the complexity of VLSI implementations and graph representations of Boolean functions with application to integer multiplication. IEEE Trans. on Computers 40, 2 (Feb. 1991), 205–213.

    Google Scholar 

  8. Bryant, R. E. Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM Computing Surveys 24, 3 (Sept. 1992), 293–318.

    Google Scholar 

  9. Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L., and Hwang, L. J. Symbolic modelchecking: 1020 states and beyond. Information and Computation 98, 2 (June 1992), 142–170.

    Google Scholar 

  10. Butler, K. M., Ross, D. E., Kapur, R., and Mercer, M. R. Heuristics to compute variable ordering for efficient manipulation of ordered binary decision diagrams. In Proc. 28thDesign Automation Conf. (1991), pp. 417–420.

    Google Scholar 

  11. Büttner, W., and Simonis, H. Embedding Boolean expressions into logic programming. J. of Symbolic Computation 4, 2 (Oct. 1987), 191–205.

    Google Scholar 

  12. Chandrasekhar, M. S., Privitera, J. P., and Conradt, K. W. Application of term rewriting techniques to hardware design verification. In Proc. 24thDesign Automation Conf. (1987), pp. 277–282.

    Google Scholar 

  13. Claesen, L. J., Ed. Formal VLSI Correctness Verification—VLSI Design Methods, vol. II. Elsevier, 1990. Chap. 2, Efficient Tautology Checking Algorithms.

    Google Scholar 

  14. Clarke, E. M., Fujita, M., McGeer, P. C., McMillan, K., Yang, J. C.-Y., and Zhao, X. Multi-terminal binary decision diagrams: an efficient data structure for matrix representation. In Proc. Intl. Workshop on Logic Synthesis (May 1993).

    Google Scholar 

  15. Crawford, J. M., and Auton, L. D. Experimental results on the crossover point in satisfiability problems. In Proc. 11thNat. Conf. on AI (1993), pp. 21–27.

    Google Scholar 

  16. Davis, M., Logemann, G., and Loveland, D. A machine program for theorem-proving. Comm. ACM 5, 7 (July 1962), 394–397.

    Google Scholar 

  17. Davis, M., and Putnam, H. A computing procedure for quantification theory. J. ACM 7 (1960), 201–215.

    Google Scholar 

  18. Devadas, S. Comparing two-level and ordered binary decision diagram representations of logic functions. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 12, 5 (May 1993), 722–723.

    Google Scholar 

  19. Friedman, S. J., and Supowitz, K.J. Finding the optimal variable ordering for binary decision diagrams. IEEE Trans. on Computers 39, 5 (May 1990), 710–713.

    Google Scholar 

  20. Fujita, M., Slaney, J., and Bennett, F. Automatic generation of some results in finite algebra. In Proc. 14th Intl. Joint Conf. on AI (1993), pp. 52–57.

    Google Scholar 

  21. Hsiang, J. Refutational theorem proving using term-rewriting systems. Artificial Intelligence 3, 25 (Mar. 1985), 255–300.

    Google Scholar 

  22. Hu, A. J., and Dill, D. L. Reducing BDD size by exploiting functional dependencies. In Proc. 30thDesign Automation Conf. (1993), pp. 266–271.

    Google Scholar 

  23. Jeong, S.-W., and Somenzi, F. A new algorithm for the binate covering problem and its application to the minimization of Boolean relations. In IEEE Intl. Conf. on Computer-Aided Design (1992), pp. 417–420.

    Google Scholar 

  24. Joyce, J. J., and Seger, C.-J. H. Linking BDD-based symbolic evaluation to interactive theorem-proving. In 30thDesign Autom. Conf. (1993), pp. 469–474.

    Google Scholar 

  25. Kam, T. Y. K., and Brayton, R. K. Multi-valued decision diagrams. Technical Report UCB/ERL M90/125, University of California, Berkeley, Dec. 1990.

    Google Scholar 

  26. Long, D. E. Model Checking, Abstraction, and Compositional Verification. PhD thesis, School of Computer Science, Carnegie Mellon Univ., July 1993.

    Google Scholar 

  27. McCarthy, J. A tough nut for proof procedures. AI Memo 16, Stanford University, July 1964.

    Google Scholar 

  28. McMillan, K. L. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

    Google Scholar 

  29. Minato, S. Zero-supressed BDDs for set manipulation in combinatorial problems. In Proc. 30thDesign Automation Conf. (1993), pp. 272–277.

    Google Scholar 

  30. Moore, J. S. Introduction to the OBDD algorithm for the ATP community. Technical Report 84, Computational Logic, Inc., Austin, Texas, Oct. 1992.

    Google Scholar 

  31. Rauzy, A. Using enumerative methods for Boolean unification. In [3]. MIT Press, 1993, ch. 13, pp. 237–251.

    Google Scholar 

  32. Rauzy, A. Notes on the design of an open Boolean solver. In Proc. Intl. Conf. on Logic Programming (1994). To appear.

    Google Scholar 

  33. Rudell, R. Dynamic variable ordering for ordered binary decision diagrams. In IEEE Intl. Conf. on Computer-Aided Design (Nov. 1993), pp. 42–47.

    Google Scholar 

  34. Selman, B., Levesque, H., and Mitchell, D. A new method for solving hard satisfiability problems. In Proc. 10thNat. Conf. on AI (July 1992), pp. 440–446.

    Google Scholar 

  35. Simonis, H., and Dincbas, M. Propositional calculus problems in CHIP. In [3]. MIT Press, 1993, ch. 15, pp. 269–285.

    Google Scholar 

  36. Slaney, J. Finder version 3.0 — notes and guide. Technical report, Centre for Information Science Research, Australian National University, 1993.

    Google Scholar 

  37. Slaney, J., Fujita, M., and Stickel, M. Automated reasoning and exhaustive search: Quasigroup existence problems. Computers and Mathematics with Applications. To appear.

    Google Scholar 

  38. Subramanian, S.A Mechanized Framework for Specifying Problem Domains and Verifying Plans. PhD thesis, Dept. of Comp. Science, U. of Texas, Austin, 1993.

    Google Scholar 

  39. Wallace, M. Personal communication. ECRC, Munich, Germany, July 1993.

    Google Scholar 

  40. Walsh, T. Personal communication. University of Edinburgh, Oct. 1993.

    Google Scholar 

  41. Zhang, H. Sato: A decision procedure for propositional logic. Association for Automated Reasoning Newsletter, 22 (Mar. 1993), 1–3.

    Google Scholar 

  42. Zhang, H., and Stickel, M. E. Implementing the Davis-Putnam algorithm by tries. Draft manuscript, Mar. 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jean-Pierre Jouannaud

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Uribe, T.E., Stickel, M.E. (1994). Ordered Binary Decision Diagrams and the Davis-Putnam procedure. In: Jouannaud, JP. (eds) Constraints in Computational Logics. CCL 1994. Lecture Notes in Computer Science, vol 845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0016843

Download citation

  • DOI: https://doi.org/10.1007/BFb0016843

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58403-2

  • Online ISBN: 978-3-540-48699-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics