Abstract
A new method to segment MR volumes has been developed. The method matches elastically a 3D deformable prior model, describing the structures of interest, to the MR volume of a patient. The deformation is done using a deformation grid. Oriented distance maps are utilized to guide the deformation process. Two alternative restrictions are used to preserve the geometrical prior knowledge of the model. The method is applied to extract the body, the lungs and the heart. The segmentation is needed to build individualized boundary element models for bioelectromagnetic inverse problem. The method is fast, automatic and accurate. Good results have been achieved for four MR volumes tested so far.
Chapter PDF
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Nenonen, J.: Solving the inverse problem in magnetocardiography. IEEE Eng. Med. Biol. 13 (1994) 487–496
Lötjönen, J., Reissman, P-J., Magnin, I.E., Nenonen, J. and Katila, T.: A Triangulation Method of an Arbitrary Point Set for Biomagnetic Problems. IEEE Trans. Magn. in press
Amit, Y., Kong, A.: Graphical templates for model registration. IEEE Trans. PAMI 18 (1996) 225–236
Philip, K.P., Dove, E.L., McPherson, D., Gotteiner, N.L., Vonesh, M.J., Stanford, W., Reed, J.E., Rumberger, J.A., Chanbran, K.B.: Automatic detection of myocardial contours in cine computed tomographic images. IEEE Trans. Med. Imag. 13 (1994) 241–253
Worring, M.W., Smeulders, A.W.M., Staib, L.H., Duncan, J.S.: Parameterized feasible boundaries in gradient vector fields. Comput. Vision Imag. Under. 63 (1996) 135–144
Fwu, J.K., Djurie, P.M.: Unsupervised vector image segmentation by a tree structure-ICM algorithm. IEEE Trans. Med. Imag. 15 (1996) 871–880
Sonka, M., Tadikonda, S.K., Collins, S.M.: Knowledge-based interpretation of MR brain images. IEEE Trans. Med. Imaging 44 (1996) 443–452
Goshtasby, A., Turner, D.A.: Segmentation of cardiac cine MR images for extraction of right and left ventricular chambers. IEEE Trans. Med. Imag. 14 (1995) 56–64
Chakrabotry, A., Staib, L.H., Duncan, J.S.: Deformable boundary finding in medical images by integrating gradient and region information. IEEE Trans. Med. Imag. 15 (1996) 859–870
Davatzikos, C.A., Bryan, R.N.: Using a deformable surface model to obtain a shape representation of the cortex. IEEE Trans. Med. Imag. 15 (1996) 785–795
Cohen, L.D., Cohen, I.: Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Trans. PAMI 15 (1993) 1131–1147
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Inter. Journ. Comp. Vision 1 (1988) 321–331
Davatzikos, C.A., Prince, J.L.: An active contour model for mapping the cortex. IEEE Trans. Med. Imag. 14 (1995) 65–80
Reissman, P-J., Magnin, I.E.: Modeling 3D deformable object with the active pyramid. Int. J. Patt. Rec. & Art. Int. 11 (1997) 1129–1139
Jain, A.K., Zhong, Y., Lakshmannan, S.: Object matching using deformable templates. IEEE Trans. PAMI 14 (1996) 267–278
Terzopoulos, D., Waters, K.: Analysis and synthesis of facial image sequences using physical and anatomical models. IEEE Trans. Med. Imag. 15 (1993) 569–579
Reissman, P-J.: Modélisation et mise en correspondance par pyramides actives: Application à l’imagerie cardique par résonance magnétique, Doctorate thesis, L’Institut National Des Sciences Appliquees de Lyon France (1997)
Canny, J.: A computational approach to edge detection. IEEE Trans. PAMI 8 (1986) 679–698
Borgefors, G.: Distance transformation in digital images. Computer Vision Graphics and Image Processing 48 (1986) 344–371
Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of image. IEEE PAMI 6 (1984) 721–741
Borgefors, G.: Hierarchical chamfer matching: A parametric edge matching algorithm. IEEE Trans. PAMI 10 (1988) 849–865
Sederberg, T., Parry, S.: Free-form deformation of solid geometrical models. SIGGRAPH 20 (1986) 151–160
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lötjönen, J., Magnin, I.E., Reissman, PJ., Nenonen, J., Katila, T. (1998). Segmentation of magnetic resonance images using 3D deformable models. In: Wells, W.M., Colchester, A., Delp, S. (eds) Medical Image Computing and Computer-Assisted Intervention — MICCAI’98. MICCAI 1998. Lecture Notes in Computer Science, vol 1496. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0056311
Download citation
DOI: https://doi.org/10.1007/BFb0056311
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-65136-9
Online ISBN: 978-3-540-49563-5
eBook Packages: Springer Book Archive