Abstract
Chromatic dispersion (CD) limitations for binary and quaternary phase-modulated systems using direct detection receivers are analyzed by numerical simulation, comparing the results with intensity-modulated systems, considering both IMDD (Intensity-Modulation Direct-Detection) and Duobinary formats. Three different receiver structures are assumed and many transmitter and receiver filter bandwidths are spanned, to find out how much CD penalty varies depending on such alternative solutions. Penalty was assessed by means of a very accurate performance estimation semi-analytical technique based on Karhunen-Loève series, which theoretically converges to the exact bit-error rate for direct detection optical systems in the presence of both ase noise and inter-symbol interference. The results show that DQPSK is the most resilient format to CD, as expected, but it is also the less sensitive format to filter bandwidth variations.
Résumé
L’article présente une analyse par simulation numérique de limitations dues à la dispersion chromatique dans les systèmes à modulation de phase binaires et quaternaires utilisant des récepteurs à détection directe. Il compare les résultats à ceux des systèmes à modulation d’intensité utilisant la détection directe ou le format duobinaire. Il étudie comment la pénalité due à la dispersion varie selon la structure du récepteur (trois structures différentes sont considérées) et les largeurs de bande des filtres d’émission et de réception (de nombreuses valeurs sont considérées). La pénalité est évaluée au moyen d’une méthode semi-analytique d’estimation très précise de la performance, fondée sur un développement de Karhunen Loeve, qui converge théoriquement vers le taux d’erreur binaire exact dans le cas de systèmes optiques à détection directe en présence à la fois de bruit d’émission spontanée amplifiée et d’interférence intersymbole. La modulation par déplacement différentiel de phase apparaît comme le système le plus résistant à la dispersion chromatique, comme on s’y attendait, mais est aussi le format le moins sensible aux variations des largeurs de bandes des filtres.
Similar content being viewed by others
References
Rhode M. at al., “Robustness of dpsk direct detection transmission format in standard fiber wdm systems,” iee Electronics Letters, vol. 36, no 17, Aug. 2000, pp. 1483–1484.
Gené G.M., Soler M., Killey R. I., Prat J., “Investigation of 10-Gb/s dqpsk systems in presence of chromatic dispersion, fiber non-linearities and phase noise”, ieee Photon. Technol Lett., vol. 16, no 3, pp. 924–926, Mar. 2004.
Wang J., Kahn J. M., “Conventional dpsk versus symmetrical dpsk: comparison of dispersion tolerances”, ieee Photon. Technol. Lett., vol. 16, no 6, pp. 1585–1587, Jun. 2004.
Griffn R. A., Carter A. C., “Optical differential quadrature phase-shift key (odqpsk) for high capacity optical transmission,” in Proc. of ofc 2002, paper WX6, pp. 367–368.
Wang J., Kahn J. M., “Impact of Chromatic and Polarization-Mode Dispersions on dpsk Systems Using Interferometric Demodulation and Direct Detection”, J. of Light. Tech., vol. 22, no 2, pp. 362–371, Feb. 2004.
Penninckx D., Chbat M., Pierre L., Thierry J.-R, “The Phase-Shaped Binary Transmission (psbt): a new technique to transmit far beyond the chromatic dispersion limit,” Proceedings of ecoc 1996, Oslo, Norway, vol. 2, pp. 173–176, Sep. 1996
Tokle T. et al., “6500 km transmission of rz-dqpsk wdm signals”, Electron. Lett., vol. 40, no 7, Apr. 2004, pp. 444–445
Becouarn L. et al., “42 × 42.7 Gb/s RZ-dpsk transmission over a 4820 km long nzdsf deployed line using C-band-only EDFAS”, in Proc. of ofc 2004, vol. 2, pp. 767–769
Cai J.-X. et al., “rz-dpsk field trial over 13,100 km of installed non slope-matched submarine fibers”, in Proc. of ofc 2004, vol. 2, pp. 758–760.
Ishida K. et al, “Transmission of 20 × 20 Gb/s rz-dqpsk signals over 5090 km with 0.53 b/s/Hz spectral efficiency”, in Proc. of OFC 2004, vol. 2, pp. 582–584.
Yoshikane N., Morita I., “1.14 b/s/Hz spectrally-efficient 50 × 85.4 Gb/s transmission over 300 km using copolarized CS-RZ DQPSK signals’, in Proc. of OFC 2004, paper PDP38
Pan Z., Wang Y., Song Y., Motaghian R., Havstad S., Willner A., “Monitoring chromatic dispersion and PMD impairments in optical differential phaseshift-keyed (DPSK) systems”, in Proc. of OFC 2003, vol. 1, pp. 402–403
Elrefaie A. F., Wagner R. E., “Chromatic dispersion limitations for FSK and DPSK systems with direct detection receivers”, IEEE Photon. Technol. Lett., vol. 3, no 1, pp. 71–73, Jan. 1991.
Chinn S. R., Boroson D. M., Livas J. C., “Sensitivity of optically preamplified DPSK receivers with Fabry-Perot filters“, IEEE/OSA J. of Light. Technol., vol. 14, pp. 370–376, Sep. 1996.
Bosco G., Gaudino R., “On BER estimation in optical system simulation: Monte-Carlo vs. semi-analytical techniques”, ECOC 2000 proceedings, Workshop on “Modelling and design of optical networks and systems”, paper 3.3, Munich, Germany, Sep.2000
Bosco G., Carena A., Curri V., Gaudino R., Poggiolini P., Benedetto S., “A novel analytical approach to the evaluation of the impact of fiber parametric gain on the bit error rate,” IEEE Trans. on Commun., vol. 49, no 12, pp. 2154–2163, Nov. 2001.
Gnauck A.H., Winzer P. J., “Optical Phase-Shift-Keyed Transmission,” IEEE J. Lightw. Technol., vol. 23, no 1, pp. 115–130, Jan. 2005.
Lee J.S., Shim C.S., “Bit error rate analysis of optically preamplified receivers using an eigenfunction expansion method in optical frequency domain”, J. Lightw. Technol., vol. 12, pp. 1224–1229, 1994.
Forestieri E, “Evaluating the error probability in lightwave systems with chromatic dispersion, arbitrary pulse shape and preand post-detection filtering”, IEEE J. of Lightwave Technol., vol. 18, n. 11, pp. 1493–1503, Nov. 2000.
Penninckx D., Bissessur H., Brindel P., Gohin E., Bakhti F, “Optical Differential Phase Shift Keying (DPSK) direct detection considered as a duobinary signal”, in Proc. of ECOC’01, paper W.P.40, Amsterdam, Sep. 2001.
Bosco G., Poggiolini P., “On the Q-factor inaccuracy in the performance analysis of optical direct-detection DPSK systems”, IEEE Photon. Technol. Lett., vol. 16, no 2, pp. 665–667, Feb. 2004
Jeruchim M.C., “Techniques for estimation of the bit error rate in the simulation of digital communication systems,” IEEE Journal of Selec. Areas in Communications, vol. sac-2, no 1, Jan. 1984.
Bosco G., Poggiolini P., “An Analysis of the Impact of Receiver Imperfections on the Performance of Optical DQPSK Systems”, IEEE Electronics Letters, vol. 40, no 18, Sep. 2004, pp. 1147–1149.
Walklin S., Conradi J., “Effect of Mach-Zehnder Modulator DC Extinction Ratio on Residual Chirp-Induced Dispersion in 10-Gb/s Binary and AM-PSK Duobinary Lightwave Systems“, IEEE Photon. Technol. Lett., vol. 9, no 10, pp. 1400–1402, Oct. 1997.
Bosco G., Poggiolini P., “The effect of receiver imperfections on the performance of direct-detection optical systems using DPSK modulation”, in Proc. of OFC 2003, Atlanta, Georgia, Mar. 2003.
Kim H., Winzer P.J., “Robustness to laser frequency offset in direct-detection DPSK and DQPSK systems”, IEEE J. of Lightwave Technol., vol. 21, no 9, pp. 1887–1891, Sep. 2003.
Kenag-Po Ho, “The effect of interferometer phase error on direct-detection DPSK and DQPSK signals”, IEEE Photon. Technol. Lett., vol. 16, no 1, pp. 308–310, Jan. 2004
Yonenaga K., Kuwano S., “Dispersion tolerant optical transmission system using duobinary transmitter and binary receiver”, IEEE/OSA Journal of Lightwave Technology, vol. 15, no 8, pp. 1530–1537, August 1997.
Penninckx D., Chbat M., Pierre L., Thierry J.-R, “The Phase-Shaped Binary Transmission (PSBT): a new technique to transmit far beyond the chromatic dispersion limit”, IEEE Photonics Technology Letters, vol. 9, n. 2, pp. 259–261, Feb. 1997.
Bulow H., “Electronic equalization of transmission impairments,” in Proc. of OFC 2002, paper TuE4, Anaheim (CA), Mar. 17–22, 2002.
Wang J., Kahn J. M., “Performance of electrical equalizers in optically amplified OOK and DPSK systems,” IEEE Phot. Technol. Lett., vol. 16, no 5, May 2004.
Curri V., et al., “Electronic equalization for advanced modulation formats in dispersion-limited systems,” IEEE Photonics Technology Letters, vol. 16, no 11, pp. 2556–2558, Nov. 2004
Agazzi O.E., Hueda M.R., Carrer H.S., Crivelli D.E., “Maximum-likelihood sequence estimation in dispersive optical channels”, IEEE J. Lightw. Technol., vol. 23, no 2, Feb. 2005, pp. 749–763.
Faerbert A., Langenbach S., Stojanovic N., Dorschky C., Kupfer T., Schulien G), Elbers J.-R), Wernz H., Griesser H., Glingener C., “Performance of a 10.7 Gb/s Receiver with Digital Equaliser using Maximum Likelihood Sequence Estimation”, in Proc. European Comm. Conf. (ECOC) 2004, 5–9 Sep. 2004, Paper Th4.1.5.
Bosco G., Poggiolini P., “Long-Distance Effectiveness of mlse imdd Receivers”, IEEE Phot. Technol Lett, vol. 18, no 9, pp. 1037–1039, May 2006.
Benedetto S., Biglieri E., Castellani V., Digital Transmission Theory, Prentice-Hall, Englewood Cliffs, New Jersey, 1987.
Elbers J.-R), Wernz H., Griesser H., Glingener C., Faerbert A., Langenbach S., Stojanovic N., Dorschky G), Kupfer T., Schulien G, “Measurement of the dispersion tolerance of optical duobinary with an MLSE-receiver at 10.7 Gb/s”, in Proc. Optical Fiber Commun. Conf. (OFC), 6–11 March 2005, Paper OThJ4.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Poggiolini, P., Bosco, G. Impact of chromatic dispersion on DPSK and DQPSK direct-detection optical systems. Ann. Telecommun. 62, 531–549 (2007). https://doi.org/10.1007/BF03253275
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF03253275
Key words
- Optical fiber transmission
- Light dispersion
- Phase shift keying
- Quadrature modulation
- Differential modulation
- Direct detection
- Comparative study
- Modulation
- Electric filter
- Optical filter
- Numerical simulation
- Karhunen Loeve transformation