Abstract
In this paper we discuss the problem of recovering a density from its moments. For theoretical reasons, we propose the use of fractional moments combined with the Maximum Entropy density. We then discuss the application to the pricing of exotic options.
Similar content being viewed by others
References
Abate, J. and Whitt, W. (1992). The Fourier-series method for inverting transforms of probability distributions, Queueing Systems Theory Appl. vol. 10, 5–88.
Akhiezer, N.I. (1965). The Classical Moment Problem and some Related Questions in Analysis. Oliver & Boyd, London.
Avellaneda, M. (1998). Minimum Entropy Calibration of Asset Pricing Models. Journal of Theoretical and Applied Finance vol. 1(4), 447–472.
Buchen, P.W. and Kelly, M. (1996). The Maximum Entropy Distribution of an Asset Inferred from Option Prices, Journal of Financial and Quantitative Analysis vol. 31(1), 143–159.
Cressie, N. (1986). The Moment Generating Function has its Moments. Journal of Statistical Planning and Inference vol. 13, 337–344.
Dufresne, D. (1989). Weak Convergence of Random Growth Processes with Applications to Insurance. Insurance: Math. Econonom. vol. 8, 187–201.
Dufresne, D. (2000). Laguerre Series for Asian and Other Options. Mathematical Finance vol. 10(4), 407–428.
Fusai, G. (2001). Applications of the Laplace Transform for Evaluating Occupation Time Options and other Derivatives. PhD. Thesis, University of Warwick.
Fusai, G. and Tagliani, A. (2002). An Accurate Valuation of Asian Options Using Moments, International Journal of Theoretical and Applied Finance vol. 5(2), 147–169
Geman, H. and Yor, M. (1992). Quelques Relations Entre Processus de Bessel, Options Asiatique et Fonctions Confluentes Hypergéométriques. C.R. Acad. Sci. Paris vol. 314(1), 471–474.
Geman, H. and Yor, M. (1993). Bessel Processes, Asian Options and Perpetuities. Mathematical Finance vol. 3(4), 349–375.
Golan, A., Judge, G. and Miller, D. (1996). Maximum Entropy Econometrics: Robust Estimation with Limited Data, John Wiley & Sons.
Jaynes, E.T. (1978). Where Do we Stand on Maximum Entropy, in The Maximum Entropy Formalism, (R.D. Levine and M. Tribus, eds.). MIT Press Cambridge MA, 15–118.
Kesavan, H.K. and Kapur, J.N. (1992). Entropy Optimization Principles with Applications. Academic Press.
Kullback, S. (1967). A lower bound for discrimination information in terms of variation. IEEE Trans, on Information Theory IT-13, 126–127.
Levy, E. (1992). Pricing European Average Rate Currency Options. Journal of International Money and Finance vol. 11, 474–491.
Lin, G.D. (1992). Characterizations of Distributions via Moments. Sankhja: The Indian Journal of Statistics vol. 54, Series A, 128–132.
Lindsay, B.G. and Basak, P. (1995). Moments Determine the Tail of a Distribution (But not Much Else). Technical report 95-7, Center for likelihood Studies, Dept. of Statistics, The Pennsylvania State University, University Park, PA.
Lindsay, B.G. and Roeder, K. (1997). Moment-based Oscillation Properties of Mixture Models. Ann. Statist, vol. 25, 378–386.
Shohat, J.A. and Tamarkin, J.D. (1943). The Problem of Moments. AMS Mathematical Survey, 1, Providence RI.
Stoyanov, J. (1997). Counterexamples in Probability (2nd edition). Wiley Series in Probability and Statistics.
Tagliani, A. (2001). Recovering a Probability Density Function from its Mellin Transform, Applied Mathematics and Computation vol. 118, 151–159.
Thompson, G.W.P. (1999). Topics in Mathematical Finance. PhD. Thesis, Queens’ College, January.
Turnbull, S. and Wakeman, L. (1991). A Quick Algorithm for Pricing European Average Options. Journal of Financial and Quantitative Analysis vol. 26, 377- 89.
Wilmott, P., Dewynne, J.N. and Howison, S. (1993). Option Pricing: Mathematical Models and Computation. Oxford Financial Press.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
D’Amico, M., Fusai, G. & Tagliani, A. Valuation of exotic options using moments. Oper Res Int J 2, 157–186 (2002). https://doi.org/10.1007/BF02936326
Issue Date:
DOI: https://doi.org/10.1007/BF02936326