Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An effective DOA method via virtual array transformation

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

A new DOA estimation method is presented for the virtual array transformation and the improved spatial smoothing algorithm. The new method not only overcomes the weakness of the ambiguity of DOA estimation of arbitrary array, but also improves the abilities of resolution and de-correlation. It is proven to be effective by theoretical analyses and computer simulations. What is more, the method can improve the estimation and resolution of DOA under the condition of sparse practical array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schmidt, R., Multiple emitter location and signal parameter estimation, IEEE Trans., 1986, AP-34(2): 267.

    Google Scholar 

  2. Ziskind, I., Wax, M., Maximum likelihood localization of multiple sources by alternating projection, IEEE Trans., 1988, ASSP-36(10): 1553.

    MATH  Google Scholar 

  3. Viberg, M., Ottersten, B., Detection and estimation in sensor arrays using weighted subspace fitting, IEEE Trans., 1991, SP-39(11): 2431.

    Google Scholar 

  4. Shan, T., Wax, M., Kailath, T. K., On spatial smoothing for direction of arrival estimation of coherent signals, IEEE Trans., 1985, ASSP-33(4): 806.

    Google Scholar 

  5. Williams, R. T., An improved spatial smoothing technique for bearing estimation on a multipath environment, IEEE Trans., 1989, ASSP-36(4): 425.

    Google Scholar 

  6. Zoltowski, M. D., Mathews, C. P., Real-time frequency and 2-D angle estimation with sub-nyquist spatio-temporal sampling, IEEE Trans., 1994, SP-42(10): 2781.

    Google Scholar 

  7. Haykin, S. P., Reiliy, J., Kezys, V. et al., Some aspects of array signal processing, IEEE Proc. F., 1992, 139(1): 1.

    Google Scholar 

  8. Eiges, R., Griffiths, H. D., Mode-space spatial spectral estimation for circular arrays, IEEE Proc. Radar, Sonar Navig., 1994, 14(6): 300.

    Article  Google Scholar 

  9. Friedlander, B., Direction finding using spatial smoothing with interpolated arrays, IEEE Trans., 1992, AES-28(2): 574.

    Google Scholar 

  10. Cadzow, J. A., Signal enhancement—a composite property mapping algorithm, IEEE Trans., 1988, ASSP-36(1): 49.

    MATH  Google Scholar 

  11. Stoica, P., Nehorai, A., MUSIC, Maximum likelihood, and Cramer-Rao bound, ASSP-37, 1989, IEEE Trans. on ASSP-37 (5): 720.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Yongliang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Chen, H. & Wan, S. An effective DOA method via virtual array transformation. Sci. China Ser. E-Technol. Sci. 44, 75–82 (2001). https://doi.org/10.1007/BF02916727

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02916727

Keywords

Navigation